6#include <proxsuite-nlp/modelling/spaces/cartesian-product.hpp>
22 assert(!c1.valueless_after_move() && !c2.valueless_after_move());
29 void evaluate(
const ConstVectorRef &x,
const ConstVectorRef &u,
37 using CartesianProduct = proxsuite::nlp::CartesianProductTpl<Scalar>;
38 auto get_product_space()
const {
39 return dynamic_cast<CartesianProduct
const &
>(*this->
space);
41 static Data &data_cast(BaseData &data) {
return static_cast<Data &
>(data); }
52template <
typename Scalar>
54 const ConstVectorRef &u,
56 CartesianProduct
const space = get_product_space();
57 Data &d = data_cast(data);
58 auto xs =
space.split(x);
59 ConstVectorRef u1 = u.head(
c1_->nu);
60 ConstVectorRef u2 = u.tail(
c2_->nu);
62 c1_->evaluate(xs[0], u1, *d.data1_);
63 c2_->evaluate(xs[1], u2, *d.data2_);
65 d.value_ = d.data1_->value_ + d.data2_->value_;
68template <
typename Scalar>
70 const ConstVectorRef &u,
72 CartesianProduct
const space = get_product_space();
73 Data &d = data_cast(data);
74 auto xs =
space.split(x);
75 ConstVectorRef u1 = u.head(
c1_->nu);
76 ConstVectorRef u2 = u.tail(
c2_->nu);
81 c1_->computeGradients(xs[0], u1, d1);
82 c2_->computeGradients(xs[1], u2, d2);
84 d.Lx_.head(
c1_->ndx()) = d1.
Lx_;
85 d.Lx_.tail(
c2_->ndx()) = d2.
Lx_;
86 d.Lu_.head(
c1_->nu) = d1.
Lu_;
87 d.Lu_.tail(
c2_->nu) = d2.
Lu_;
90template <
typename Scalar>
92 const ConstVectorRef &u,
94 CartesianProduct
const space = get_product_space();
95 Data &d = data_cast(data);
96 auto xs =
space.split(x);
97 ConstVectorRef u1 = u.head(
c1_->nu);
98 ConstVectorRef u2 = u.tail(
c2_->nu);
103 c1_->computeHessians(xs[0], u1, d1);
104 c2_->computeHessians(xs[1], u2, d2);
106 d.Lxx_.topLeftCorner(
c1_->ndx(),
c1_->ndx()) = d1.
Lxx_;
107 d.Lxx_.bottomRightCorner(
c2_->ndx(),
c2_->ndx()) = d2.
Lxx_;
109 d.Luu_.topLeftCorner(
c1_->nu,
c1_->nu) = d1.
Luu_;
110 d.Luu_.bottomRightCorner(
c2_->nu,
c2_->nu) = d2.
Luu_;
112 d.Lxu_.topLeftCorner(
c1_->ndx(),
c1_->nu) = d1.
Lxu_;
113 d.Lxu_.bottomRightCorner(
c2_->ndx(),
c2_->nu) = d2.
Lxu_;
115 d.Lux_ = d.Lxu_.transpose();
118template <
typename Scalar>
120 return std::make_shared<Data>(*
this);
123template <
typename Scalar>
131#ifdef ALIGATOR_ENABLE_TEMPLATE_INSTANTIATION
132#include "./cost-direct-sum.txx"
auto directSum(xyz::polymorphic< CostAbstractTpl< Scalar > > const &c1, xyz::polymorphic< CostAbstractTpl< Scalar > > const &c2)
Stage costs for control problems.
xyz::polymorphic< Manifold > space
CostAbstractTpl(U &&space, const int nu)
Data struct for CostAbstractTpl.
shared_ptr< BaseData > data2_
void computeGradients(const ConstVectorRef &x, const ConstVectorRef &u, BaseData &data) const override
Compute the cost gradients .
xyz::polymorphic< BaseCost > PolyCost
xyz::polymorphic< BaseCost > c1_
shared_ptr< BaseData > data1_
shared_ptr< BaseData > createData() const override
void evaluate(const ConstVectorRef &x, const ConstVectorRef &u, BaseData &data) const override
Evaluate the cost function.
void computeHessians(const ConstVectorRef &x, const ConstVectorRef &u, BaseData &data) const override
Compute the cost Hessians .
ALIGATOR_DYNAMIC_TYPEDEFS(Scalar)
DirectSumCostTpl(const PolyCost &c1, const PolyCost &c2)
CostAbstractTpl< Scalar > BaseCost
Data(const DirectSumCostTpl &model)
xyz::polymorphic< BaseCost > c2_
ManifoldAbstractTpl< Scalar > Manifold
CostDataAbstractTpl< Scalar > BaseData