aligator  0.14.0
A primal-dual augmented Lagrangian-type solver for nonlinear trajectory optimization.
 
Loading...
Searching...
No Matches
aligator::CartesianProductTpl< _Scalar > Struct Template Reference

The cartesian product of two or more manifolds. More...

#include <aligator/modelling/spaces/cartesian-product.hpp>

Inheritance diagram for aligator::CartesianProductTpl< _Scalar >:
[legend]
Collaboration diagram for aligator::CartesianProductTpl< _Scalar >:
[legend]

Public Types

using Scalar = _Scalar
 
using Base = ManifoldAbstractTpl<Scalar>
 
- Public Types inherited from aligator::ManifoldAbstractTpl< _Scalar >
using Scalar = _Scalar
 
using TangentSpaceType = VectorSpaceTpl<Scalar, Eigen::Dynamic>
 Typedef for the tangent space, as a manifold.
 

Public Member Functions

 ALIGATOR_DYNAMIC_TYPEDEFS (Scalar)
 
const BasegetComponent (std::size_t i) const
 
std::size_t numComponents () const
 
template<class Concrete>
void addComponent (const Concrete &c)
 
void addComponent (const CartesianProductTpl &other)
 
 CartesianProductTpl ()=default
 
 CartesianProductTpl (const CartesianProductTpl &)=default
 
CartesianProductTploperator= (const CartesianProductTpl &)=default
 
 CartesianProductTpl (CartesianProductTpl &&)=default
 
CartesianProductTploperator= (CartesianProductTpl &&)=default
 
 CartesianProductTpl (const std::vector< xyz::polymorphic< Base > > &components)
 
 CartesianProductTpl (std::vector< xyz::polymorphic< Base > > &&components)
 
 CartesianProductTpl (std::initializer_list< xyz::polymorphic< Base > > components)
 
 CartesianProductTpl (const xyz::polymorphic< Base > &left, const xyz::polymorphic< Base > &right)
 
int nx () const
 Get manifold representation dimension.
 
int ndx () const
 Get manifold tangent space dimension.
 
void neutral_impl (VectorRef out) const
 
void rand_impl (VectorRef out) const
 
bool isNormalized (const ConstVectorRef &x) const
 Check if the input vector x is a viable element of the manifold.
 
template<class VectorType, class U = std::remove_const_t<VectorType>>
std::vector< U > split_impl (VectorType &x) const
 
template<class VectorType, class U = std::remove_const_t<VectorType>>
std::vector< U > split_vector_impl (VectorType &v) const
 
std::vector< VectorRef > split (VectorRef x) const
 
std::vector< ConstVectorRef > split (const ConstVectorRef &x) const
 
std::vector< VectorRef > split_vector (VectorRef v) const
 
std::vector< ConstVectorRef > split_vector (const ConstVectorRef &v) const
 
VectorXs merge (const std::vector< VectorXs > &xs) const
 
VectorXs merge_vector (const std::vector< VectorXs > &vs) const
 
- Public Member Functions inherited from aligator::ManifoldAbstractTpl< _Scalar >
 ALIGATOR_DYNAMIC_TYPEDEFS (Scalar)
 Scalar type.
 
virtual ~ManifoldAbstractTpl ()=default
 
VectorXs neutral () const
 Get the neutral element \(e \in M\) from the manifold (if this makes sense).
 
void neutral (VectorRef out) const
 Get the neutral element \(e \in M\) from the manifold (if this makes sense).
 
VectorXs rand () const
 Sample a random point \(x \in M\) on the manifold.
 
void rand (VectorRef out) const
 Sample a random point \(x \in M\) on the manifold.
 
TangentSpaceType tangentSpace () const
 Return an object representing the tangent space as a manifold.
 
void integrate (const ConstVectorRef &x, const ConstVectorRef &v, VectorRef out) const
 Manifold integration operation \(x \oplus v\).
 
void Jintegrate (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const
 Jacobian of the integation operation.
 
void JintegrateTransport (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const
 Perform the parallel transport operation.
 
void difference (const ConstVectorRef &x0, const ConstVectorRef &x1, VectorRef out) const
 Manifold difference/retraction operation \(x_1 \ominus x_0\).
 
void Jdifference (const ConstVectorRef &x0, const ConstVectorRef &x1, MatrixRef Jout, int arg) const
 Jacobian of the retraction operation.
 
void interpolate (const ConstVectorRef &x0, const ConstVectorRef &x1, const Scalar &u, VectorRef out) const
 
VectorXs integrate (const ConstVectorRef &x, const ConstVectorRef &v) const
 Manifold integration operation \(x \oplus v\).
 
VectorXs difference (const ConstVectorRef &x0, const ConstVectorRef &x1) const
 Manifold difference/retraction operation \(x_1 \ominus x_0\).
 
VectorXs interpolate (const ConstVectorRef &x0, const ConstVectorRef &x1, const Scalar &u) const
 Interpolation operation.
 

Protected Member Functions

void integrate_impl (const ConstVectorRef &x, const ConstVectorRef &v, VectorRef out) const
 Perform the manifold integration operation.
 
void difference_impl (const ConstVectorRef &x0, const ConstVectorRef &x1, VectorRef out) const
 Implementation of the manifold retraction operation.
 
void Jintegrate_impl (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const
 
void JintegrateTransport_impl (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const
 
void Jdifference_impl (const ConstVectorRef &x0, const ConstVectorRef &x1, MatrixRef Jout, int arg) const
 
- Protected Member Functions inherited from aligator::ManifoldAbstractTpl< _Scalar >
virtual void interpolate_impl (const ConstVectorRef &x0, const ConstVectorRef &x1, const Scalar &u, VectorRef out) const
 Interpolation operation.
 

Protected Attributes

std::vector< xyz::polymorphic< Base > > m_components
 

Detailed Description

template<typename _Scalar>
struct aligator::CartesianProductTpl< _Scalar >

The cartesian product of two or more manifolds.

Definition at line 13 of file cartesian-product.hpp.

Member Typedef Documentation

◆ Scalar

template<typename _Scalar>
using aligator::CartesianProductTpl< _Scalar >::Scalar = _Scalar

Definition at line 15 of file cartesian-product.hpp.

◆ Base

template<typename _Scalar>
using aligator::CartesianProductTpl< _Scalar >::Base = ManifoldAbstractTpl<Scalar>

Definition at line 17 of file cartesian-product.hpp.

Constructor & Destructor Documentation

◆ CartesianProductTpl() [1/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( )
explicitdefault

◆ CartesianProductTpl() [2/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( const CartesianProductTpl< _Scalar > & )
default

◆ CartesianProductTpl() [3/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( CartesianProductTpl< _Scalar > && )
default

◆ CartesianProductTpl() [4/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( const std::vector< xyz::polymorphic< Base > > & components)
inline

Definition at line 45 of file cartesian-product.hpp.

◆ CartesianProductTpl() [5/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( std::vector< xyz::polymorphic< Base > > && components)
inline

Definition at line 48 of file cartesian-product.hpp.

◆ CartesianProductTpl() [6/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( std::initializer_list< xyz::polymorphic< Base > > components)
inline

Definition at line 51 of file cartesian-product.hpp.

◆ CartesianProductTpl() [7/7]

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::CartesianProductTpl ( const xyz::polymorphic< Base > & left,
const xyz::polymorphic< Base > & right )
inline

Definition at line 54 of file cartesian-product.hpp.

Member Function Documentation

◆ ALIGATOR_DYNAMIC_TYPEDEFS()

template<typename _Scalar>
aligator::CartesianProductTpl< _Scalar >::ALIGATOR_DYNAMIC_TYPEDEFS ( Scalar )

◆ getComponent()

template<typename _Scalar>
const Base & aligator::CartesianProductTpl< _Scalar >::getComponent ( std::size_t i) const
inline

Definition at line 20 of file cartesian-product.hpp.

◆ numComponents()

template<typename _Scalar>
std::size_t aligator::CartesianProductTpl< _Scalar >::numComponents ( ) const
inline

Definition at line 22 of file cartesian-product.hpp.

◆ addComponent() [1/2]

template<typename _Scalar>
template<class Concrete>
void aligator::CartesianProductTpl< _Scalar >::addComponent ( const Concrete & c)
inline

Definition at line 24 of file cartesian-product.hpp.

◆ addComponent() [2/2]

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::addComponent ( const CartesianProductTpl< _Scalar > & other)
inline

Definition at line 33 of file cartesian-product.hpp.

◆ operator=() [1/2]

template<typename _Scalar>
CartesianProductTpl & aligator::CartesianProductTpl< _Scalar >::operator= ( const CartesianProductTpl< _Scalar > & )
default

◆ operator=() [2/2]

template<typename _Scalar>
CartesianProductTpl & aligator::CartesianProductTpl< _Scalar >::operator= ( CartesianProductTpl< _Scalar > && )
default

◆ nx()

template<typename _Scalar>
int aligator::CartesianProductTpl< _Scalar >::nx ( ) const
inlinevirtual

Get manifold representation dimension.

Implements aligator::ManifoldAbstractTpl< _Scalar >.

Definition at line 58 of file cartesian-product.hpp.

◆ ndx()

template<typename _Scalar>
int aligator::CartesianProductTpl< _Scalar >::ndx ( ) const
inlinevirtual

Get manifold tangent space dimension.

Implements aligator::ManifoldAbstractTpl< _Scalar >.

Definition at line 66 of file cartesian-product.hpp.

◆ neutral_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::neutral_impl ( VectorRef out) const
virtual

◆ rand_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::rand_impl ( VectorRef out) const
virtual

◆ isNormalized()

template<typename _Scalar>
bool aligator::CartesianProductTpl< _Scalar >::isNormalized ( const ConstVectorRef & ) const
virtual

Check if the input vector x is a viable element of the manifold.

Reimplemented from aligator::ManifoldAbstractTpl< _Scalar >.

◆ split_impl()

template<typename _Scalar>
template<class VectorType, class U = std::remove_const_t<VectorType>>
std::vector< U > aligator::CartesianProductTpl< _Scalar >::split_impl ( VectorType & x) const

◆ split_vector_impl()

template<typename _Scalar>
template<class VectorType, class U = std::remove_const_t<VectorType>>
std::vector< U > aligator::CartesianProductTpl< _Scalar >::split_vector_impl ( VectorType & v) const

◆ split() [1/2]

template<typename _Scalar>
std::vector< VectorRef > aligator::CartesianProductTpl< _Scalar >::split ( VectorRef x) const
inline

Definition at line 84 of file cartesian-product.hpp.

◆ split() [2/2]

template<typename _Scalar>
std::vector< ConstVectorRef > aligator::CartesianProductTpl< _Scalar >::split ( const ConstVectorRef & x) const
inline

Definition at line 88 of file cartesian-product.hpp.

◆ split_vector() [1/2]

template<typename _Scalar>
std::vector< VectorRef > aligator::CartesianProductTpl< _Scalar >::split_vector ( VectorRef v) const
inline

Definition at line 92 of file cartesian-product.hpp.

◆ split_vector() [2/2]

template<typename _Scalar>
std::vector< ConstVectorRef > aligator::CartesianProductTpl< _Scalar >::split_vector ( const ConstVectorRef & v) const
inline

Definition at line 96 of file cartesian-product.hpp.

◆ merge()

template<typename _Scalar>
VectorXs aligator::CartesianProductTpl< _Scalar >::merge ( const std::vector< VectorXs > & xs) const

◆ merge_vector()

template<typename _Scalar>
VectorXs aligator::CartesianProductTpl< _Scalar >::merge_vector ( const std::vector< VectorXs > & vs) const

◆ integrate_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::integrate_impl ( const ConstVectorRef & x,
const ConstVectorRef & v,
VectorRef out ) const
protectedvirtual

Perform the manifold integration operation.

Implements aligator::ManifoldAbstractTpl< _Scalar >.

◆ difference_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::difference_impl ( const ConstVectorRef & x0,
const ConstVectorRef & x1,
VectorRef out ) const
protectedvirtual

Implementation of the manifold retraction operation.

Implements aligator::ManifoldAbstractTpl< _Scalar >.

◆ Jintegrate_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::Jintegrate_impl ( const ConstVectorRef & x,
const ConstVectorRef & v,
MatrixRef Jout,
int arg ) const
protectedvirtual

◆ JintegrateTransport_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::JintegrateTransport_impl ( const ConstVectorRef & x,
const ConstVectorRef & v,
MatrixRef Jout,
int arg ) const
protectedvirtual

◆ Jdifference_impl()

template<typename _Scalar>
void aligator::CartesianProductTpl< _Scalar >::Jdifference_impl ( const ConstVectorRef & x0,
const ConstVectorRef & x1,
MatrixRef Jout,
int arg ) const
protectedvirtual

Member Data Documentation

◆ m_components

template<typename _Scalar>
std::vector<xyz::polymorphic<Base> > aligator::CartesianProductTpl< _Scalar >::m_components
protected

Definition at line 105 of file cartesian-product.hpp.


The documentation for this struct was generated from the following file: