aligator  0.12.0
A primal-dual augmented Lagrangian-type solver for nonlinear trajectory optimization.
 
Loading...
Searching...
No Matches
aligator::ExplicitDynamicsModelTpl< _Scalar > Struct Template Referenceabstract

Explicit forward dynamics model \( x_{k+1} = f(x_k, u_k) \). More...

#include <aligator/core/explicit-dynamics.hpp>

Inheritance diagram for aligator::ExplicitDynamicsModelTpl< _Scalar >:
[legend]
Collaboration diagram for aligator::ExplicitDynamicsModelTpl< _Scalar >:
[legend]

Public Types

using Scalar = _Scalar
 
using Base = DynamicsModelTpl<Scalar>
 
using BaseData = DynamicsDataTpl<Scalar>
 
using Data = ExplicitDynamicsDataTpl<Scalar>
 
using Manifold = ManifoldAbstractTpl<Scalar>
 
using ManifoldPtr = xyz::polymorphic<Manifold>
 
- Public Types inherited from aligator::DynamicsModelTpl< _Scalar >
using Scalar = _Scalar
 
using Data = DynamicsDataTpl<Scalar>
 
using Manifold = ManifoldAbstractTpl<Scalar>
 

Public Member Functions

 ALIGATOR_DYNAMIC_TYPEDEFS (Scalar)
 
bool isExplicit () const
 Check if this dynamics model is implicit or explicit.
 
 ExplicitDynamicsModelTpl (const ManifoldPtr &space, const int nu)
 Constructor requires providing the next state's manifold.
 
virtual ~ExplicitDynamicsModelTpl ()=default
 
virtual void forward (const ConstVectorRef &x, const ConstVectorRef &u, Data &data) const =0
 Evaluate the forward discrete dynamics.
 
virtual void dForward (const ConstVectorRef &x, const ConstVectorRef &u, Data &data) const =0
 Compute the Jacobians of the forward dynamics.
 
void evaluate (const ConstVectorRef &x, const ConstVectorRef &u, const ConstVectorRef &y, BaseData &data) const
 
void computeJacobians (const ConstVectorRef &x, const ConstVectorRef &u, const ConstVectorRef &y, BaseData &data) const
 
virtual shared_ptr< BaseDatacreateData () const
 
- Public Member Functions inherited from aligator::DynamicsModelTpl< _Scalar >
 ALIGATOR_DYNAMIC_TYPEDEFS (Scalar)
 
const Manifoldspace () const
 State space for the input.
 
const Manifoldspace_next () const
 State space for the output of this dynamics model.
 
int nx1 () const
 
int nx2 () const
 
 DynamicsModelTpl (xyz::polymorphic< Manifold > space, const int nu)
 Constructor for dynamics.
 
 DynamicsModelTpl (xyz::polymorphic< Manifold > space, const int nu, xyz::polymorphic< Manifold > space_next)
 Constructor for dynamics. This constructor assumes same dimension for the current and next state.
 
virtual void computeVectorHessianProducts (const ConstVectorRef &x, const ConstVectorRef &u, const ConstVectorRef &xn, const ConstVectorRef &lbda, Data &data) const
 
virtual ~DynamicsModelTpl ()=default
 

Additional Inherited Members

- Public Attributes inherited from aligator::DynamicsModelTpl< _Scalar >
xyz::polymorphic< Manifoldspace_
 State space for the input.
 
xyz::polymorphic< Manifoldspace_next_
 State space for the output of this dynamics model.
 
const int ndx1
 State space dimension.
 
const int nu
 Control dimension.
 
const int ndx2
 Next state space dimension.
 

Detailed Description

template<typename _Scalar>
struct aligator::ExplicitDynamicsModelTpl< _Scalar >

Explicit forward dynamics model \( x_{k+1} = f(x_k, u_k) \).

Forward dynamics \( x_{k+1} = f(x_k, u_k) \). The corresponding residuals for multiple-shooting formulations are

\[ \bar{f}(x_k, u_k, x_{k+1}) = f(x_k, u_k) \ominus x_{k+1}. \]

Definition at line 20 of file explicit-dynamics.hpp.

Member Typedef Documentation

◆ Scalar

template<typename _Scalar>
using aligator::ExplicitDynamicsModelTpl< _Scalar >::Scalar = _Scalar

Definition at line 22 of file explicit-dynamics.hpp.

◆ Base

template<typename _Scalar>
using aligator::ExplicitDynamicsModelTpl< _Scalar >::Base = DynamicsModelTpl<Scalar>

Definition at line 24 of file explicit-dynamics.hpp.

◆ BaseData

template<typename _Scalar>
using aligator::ExplicitDynamicsModelTpl< _Scalar >::BaseData = DynamicsDataTpl<Scalar>

Definition at line 25 of file explicit-dynamics.hpp.

◆ Data

template<typename _Scalar>
using aligator::ExplicitDynamicsModelTpl< _Scalar >::Data = ExplicitDynamicsDataTpl<Scalar>

Definition at line 26 of file explicit-dynamics.hpp.

◆ Manifold

template<typename _Scalar>
using aligator::ExplicitDynamicsModelTpl< _Scalar >::Manifold = ManifoldAbstractTpl<Scalar>

Definition at line 27 of file explicit-dynamics.hpp.

◆ ManifoldPtr

template<typename _Scalar>
using aligator::ExplicitDynamicsModelTpl< _Scalar >::ManifoldPtr = xyz::polymorphic<Manifold>

Definition at line 28 of file explicit-dynamics.hpp.

Constructor & Destructor Documentation

◆ ExplicitDynamicsModelTpl()

template<typename _Scalar>
aligator::ExplicitDynamicsModelTpl< _Scalar >::ExplicitDynamicsModelTpl ( const ManifoldPtr & space,
const int nu )

Constructor requires providing the next state's manifold.

◆ ~ExplicitDynamicsModelTpl()

template<typename _Scalar>
virtual aligator::ExplicitDynamicsModelTpl< _Scalar >::~ExplicitDynamicsModelTpl ( )
virtualdefault

Member Function Documentation

◆ ALIGATOR_DYNAMIC_TYPEDEFS()

template<typename _Scalar>
aligator::ExplicitDynamicsModelTpl< _Scalar >::ALIGATOR_DYNAMIC_TYPEDEFS ( Scalar )

◆ isExplicit()

template<typename _Scalar>
bool aligator::ExplicitDynamicsModelTpl< _Scalar >::isExplicit ( ) const
inlinevirtual

Check if this dynamics model is implicit or explicit.

Reimplemented from aligator::DynamicsModelTpl< _Scalar >.

Definition at line 30 of file explicit-dynamics.hpp.

◆ forward()

◆ dForward()

◆ evaluate()

template<typename _Scalar>
void aligator::ExplicitDynamicsModelTpl< _Scalar >::evaluate ( const ConstVectorRef & x,
const ConstVectorRef & u,
const ConstVectorRef & y,
BaseData & data ) const
virtual

◆ computeJacobians()

template<typename _Scalar>
void aligator::ExplicitDynamicsModelTpl< _Scalar >::computeJacobians ( const ConstVectorRef & x,
const ConstVectorRef & u,
const ConstVectorRef & y,
BaseData & data ) const
virtual

◆ createData()


The documentation for this struct was generated from the following file: