|
| ALIGATOR_DYNAMIC_TYPEDEFS (Scalar) |
|
| TangentBundleTpl (Base base) |
| Constructor using base space instance.
|
|
template<typename... BaseCtorArgs> |
| TangentBundleTpl (BaseCtorArgs... args) |
| Constructor using base space constructor.
|
|
int | nx () const |
| Declare implementations.
|
|
int | ndx () const |
| Get manifold tangent space dimension.
|
|
bool | isNormalized (const ConstVectorRef &x) const |
| Check if the input vector x is a viable element of the manifold.
|
|
const Base & | getBaseSpace () const |
|
template<typename Point> |
Point::ConstSegmentReturnType | getBasePoint (const Eigen::MatrixBase< Point > &x) const |
|
template<typename Point> |
Point::SegmentReturnType | getBasePointWrite (const Eigen::MatrixBase< Point > &x) const |
|
template<typename Tangent> |
Tangent::ConstSegmentReturnType | getBaseTangent (const Tangent &v) const |
|
template<typename Tangent> |
Tangent::SegmentReturnType | getTangentHeadWrite (const Eigen::MatrixBase< Tangent > &v) const |
|
template<typename Jac> |
Eigen::Block< Jac, Eigen::Dynamic, Eigen::Dynamic > | getBaseJacobian (const Eigen::MatrixBase< Jac > &J) const |
|
| ALIGATOR_DYNAMIC_TYPEDEFS (Scalar) |
| Scalar type.
|
|
virtual | ~ManifoldAbstractTpl ()=default |
|
VectorXs | neutral () const |
| Get the neutral element \(e \in M\) from the manifold (if this makes sense).
|
|
void | neutral (VectorRef out) const |
| Get the neutral element \(e \in M\) from the manifold (if this makes sense).
|
|
VectorXs | rand () const |
| Sample a random point \(x \in M\) on the manifold.
|
|
void | rand (VectorRef out) const |
| Sample a random point \(x \in M\) on the manifold.
|
|
TangentSpaceType | tangentSpace () const |
| Return an object representing the tangent space as a manifold.
|
|
void | integrate (const ConstVectorRef &x, const ConstVectorRef &v, VectorRef out) const |
| Manifold integration operation \(x \oplus v\).
|
|
void | Jintegrate (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const |
| Jacobian of the integation operation.
|
|
void | JintegrateTransport (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const |
| Perform the parallel transport operation.
|
|
void | difference (const ConstVectorRef &x0, const ConstVectorRef &x1, VectorRef out) const |
| Manifold difference/retraction operation \(x_1 \ominus x_0\).
|
|
void | Jdifference (const ConstVectorRef &x0, const ConstVectorRef &x1, MatrixRef Jout, int arg) const |
| Jacobian of the retraction operation.
|
|
void | interpolate (const ConstVectorRef &x0, const ConstVectorRef &x1, const Scalar &u, VectorRef out) const |
|
VectorXs | integrate (const ConstVectorRef &x, const ConstVectorRef &v) const |
| Manifold integration operation \(x \oplus v\).
|
|
VectorXs | difference (const ConstVectorRef &x0, const ConstVectorRef &x1) const |
| Manifold difference/retraction operation \(x_1 \ominus x_0\).
|
|
VectorXs | interpolate (const ConstVectorRef &x0, const ConstVectorRef &x1, const Scalar &u) const |
| Interpolation operation.
|
|
|
|
void | neutral_impl (VectorRef out) const |
|
void | rand_impl (VectorRef out) const |
|
void | integrate_impl (const ConstVectorRef &x, const ConstVectorRef &dx, VectorRef out) const |
| Perform the manifold integration operation.
|
|
void | difference_impl (const ConstVectorRef &x0, const ConstVectorRef &x1, VectorRef out) const |
| Implementation of the manifold retraction operation.
|
|
void | Jintegrate_impl (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const |
|
void | JintegrateTransport_impl (const ConstVectorRef &x, const ConstVectorRef &v, MatrixRef Jout, int arg) const |
|
void | Jdifference_impl (const ConstVectorRef &x0, const ConstVectorRef &x1, MatrixRef Jout, int arg) const |
|
void | interpolate_impl (const ConstVectorRef &x0, const ConstVectorRef &x1, const Scalar &u, VectorRef out) const |
| Interpolation operation.
|
|
template<class Base>
struct aligator::TangentBundleTpl< Base >
Tangent bundle of a base manifold M.
Definition at line 9 of file tangent-bundle.hpp.