1import matplotlib.pyplot
as plt
4from aligator
import HistoryCallback, Results
10 import matplotlib.pyplot
as plt
13 prim_errs = np.asarray(prim_errs)
14 dual_errs = np.asarray(dual_errs)
15 ax0.plot(prim_errs, c=
"tab:blue")
16 ax0.set_xlabel(
"Iterations")
18 ax0.plot(dual_errs, c=col2)
19 ax0.spines[
"top"].set_visible(
False)
20 ax0.spines[
"right"].set_color(col2)
21 ax0.yaxis.label.set_color(col2)
23 ax0.legend([
"Primal error $p$",
"Dual error $d$"])
24 ax0.set_title(
"Solver primal-dual residuals")
27 yhigh = ax0.get_ylim()[1]
28 if len(prim_errs) == 0
or len(dual_errs) == 0:
30 mach_eps = np.finfo(float).eps
31 dmask = dual_errs > 2 * mach_eps
32 pmask = prim_errs > 2 * mach_eps
33 ymin = np.finfo(float).max
35 ymin = np.min(dual_errs[dmask])
36 if pmask.any()
and sum(prim_errs > 0) > 0:
37 ymin = min(np.min(prim_errs[pmask]), ymin)
38 ax0.set_ylim(ymin / _ROOT_10, yhigh)
47 target_tol: float =
None,
50 prim_infeas = cb.prim_infeas.tolist()
51 dual_infeas = cb.dual_infeas.tolist()
53 prim_infeas.append(res.primal_infeas)
54 dual_infeas.append(res.dual_infeas)
57 ax.grid(axis=
"y", which=
"major")
58 _, labels = ax.get_legend_handles_labels()
64 prim_tols = np.array(cb.prim_tols)
65 al_iters = np.array(cb.al_index)
66 labels.append(
"$\\eta_k$")
68 itrange = np.arange(len(al_iters))
70 if al_iters.max() > 0:
71 labels.append(
"AL iters")
72 ax.step(itrange, prim_tols, c=
"green", alpha=0.9, lw=1.1)
73 al_change = al_iters[1:] - al_iters[:-1]
74 al_change_idx = itrange[:-1][al_change > 0]
76 ax.vlines(al_change_idx, *ax.get_ylim(), colors=
"gray", lw=4.0, alpha=0.5)
79 ax.axhline(target_tol, color=
"k", lw=1.2)
81 ax.legend(labels=labels, **legend_kwargs)
86 q: np.ndarray, ax: plt.Axes, alpha=0.5, fc=
"tab:blue"
88 from matplotlib
import transforms
92 center = (q[0] - 0.5 * w, q[1] - 0.5 * h)
93 rect = plt.Rectangle(center, w, h, fc=fc, alpha=alpha)
94 theta = np.arctan2(q[3], q[2])
95 transform_ = transforms.Affine2D().rotate_around(*q[:2], -theta) + ax.transData
96 rect.set_transform(transform_)
102 if isinstance(axes, np.ndarray):
103 axes = axes.flatten()
104 elif not isinstance(axes, list):
119) -> tuple[plt.Figure, list[plt.Axes]]:
124 nrows, r = divmod(nu, ncols)
127 make_new_plot = axes
is None
129 fig, axes = plt.subplots(nrows, ncols, sharex=
"col", figsize=figsize)
131 fig = axes.flat[0].get_figure()
134 if rmodel
is not None:
135 effort_limit = rmodel.effortLimit
136 joint_names = rmodel.names
139 ax: plt.Axes = axes[i]
140 ax.step(times[:-1], us[:, i])
141 if effort_limit
is not None:
143 ax.hlines(-effort_limit[i], t0, tf, colors=
"k", linestyles=
"--")
144 ax.hlines(+effort_limit[i], t0, tf, colors=
"r", linestyles=
"dashdot")
146 if joint_names
is not None:
147 joint_name = joint_names[i].lower()
148 ax.set_title(joint_name, fontsize=8)
150 fig.supxlabel(xlabel)
151 fig.suptitle(
"Control trajectories")
153 axes[0].set_xlabel(xlabel)
154 axes[0].set_title(
"Control trajectories")
168) -> tuple[plt.Figure, list[plt.Axes]]:
171 assert nv == vs.shape[1]
172 if vel_limit
is not None:
173 assert nv == vel_limit.shape[0]
174 idx_to_joint_id_map = {}
177 if i
in rmodel.idx_vs.tolist():
179 idx_to_joint_id_map[i] = jid
180 nrows, r = divmod(nv, ncols)
187 fig, axes = plt.subplots(nrows, ncols, sharex=
True, figsize=figsize)
190 fig = axes.flat[0].get_figure()
194 ax: plt.Axes = axes[i]
195 ax.plot(times, vs[:, i])
196 jid = idx_to_joint_id_map[i]
197 joint_name = rmodel.names[jid].lower()
198 if vel_limit
is not None:
200 ax.hlines(-vel_limit[i], t0, tf, colors=
"k", linestyles=
"--")
201 ax.hlines(+vel_limit[i], t0, tf, colors=
"r", linestyles=
"dashdot")
203 ax.set_title(joint_name, fontsize=8)
205 fig.supxlabel(xlabel)
206 fig.suptitle(
"Velocity trajectories")
plot_convergence(HistoryCallback cb, plt.Axes ax, Results res=None, *, show_al_iters=False, float target_tol=None, legend_kwargs={})
plt.Rectangle plot_se2_pose(np.ndarray q, plt.Axes ax, alpha=0.5, fc="tab:blue")
tuple[plt.Figure, list[plt.Axes]] plot_controls_traj(times, us, ncols=2, axes=None, effort_limit=None, joint_names=None, rmodel=None, figsize=(6.4, 6.4), xlabel="Time (s)")
plot_pd_errs(ax0, prim_errs, dual_errs)
tuple[plt.Figure, list[plt.Axes]] plot_velocity_traj(times, vs, rmodel, axes=None, ncols=2, vel_limit=None, figsize=(6.4, 6.4), xlabel="Time (s)")
list[plt.Axes] _axes_flatten_if_ndarray(axes)