
End-to-End and Highly-Efficient
Differentiable Simulation for Robotics

Quentin Le Lidec*

Inria, École normale supérieure
CNRS, PSL Research University

75005 Paris, France
quentin.le-lidec@inria.fr

Louis Montaut*

Inria, École normale supérieure
CNRS, PSL Research University

75005 Paris, France
louis.montaut@inria.fr

Yann de Mont-Marin*

Inria, École normale supérieure
CNRS, PSL Research University

75005 Paris, France
yann.montmarin@gmail.com

Justin Carpentier
Inria, École normale supérieure

CNRS, PSL Research University
75005 Paris, France

justin.carpentier@inria.fr

Abstract: Over the past few years, robotics simulators have largely improved in
efficiency and scalability, enabling them to generate years of simulated data in a
few hours. Yet, efficiently and accurately computing the simulation derivatives
remains an open challenge, with potentially high gains on the convergence speed
of reinforcement learning and trajectory optimization algorithms, especially for
problems involving physical contact interactions. This paper contributes to this
objective by introducing a unified and efficient algorithmic solution for computing
the analytical derivatives of robotic simulators. The approach considers both the
collision and frictional stages, accounting for their intrinsic nonsmoothness and
also exploiting the sparsity induced by the underlying multibody systems. These
derivatives have been implemented in C++, and the code will be open-sourced in
the Simple simulator. They depict state-of-the-art timings ranging from 5 us for
a 7-dof manipulator up to 95 us for 36-dof humanoid, outperforming alternative
solutions by a factor of at least 100. For videos additional details, please see our
project website.

Keywords: Differentiable physics, Differentiable optimization, Simulation, Non-
smooth dynamics, Model-based learning

1 Introduction

Recent progress in reinforcement learning and trajectory optimization methods in robotics exten-
sively relies on simulation. Additional information, such as the simulator derivatives of the simu-
lator, might be leveraged to accelerate the convergence speed of these control methods. However,
simulating robotics systems interacting with their environment induces a sequence of nonsmooth
operations. Typically, collision detection involved in simulators is intrinsically nonsmooth (e.g.,
contact points might jump from one vertex to another one when slightly changing the orientation of
the geometries), and frictional contact dynamics corresponds to nonsmooth problems (e.g., when a
cube switches from a sticking mode to a sliding mode).

Several approaches have been envisaged to estimate simulator derivatives. Mordatch et al. [1] lever-
ages MuJoCo [2] and finite differences to discover new behaviors. However, computing gradients
via finite differences requires as many calls to forward dynamics as the number of parameters to

*Equal contribution.

https://github.com/Simple-Robotics/Simple
https://simple-robotics.github.io/publications/simple-gradients/
https://simple-robotics.github.io/publications/simple-gradients/


Table 1: Differentiable physics engines for robotics.
Physics engine Contact Model ∂(Contacts) ∂(Collisions)

MuJoCo MJX [2] CCP Auto-diff meshes∗ + primitives
Nimble [10], [8] LCP Implicit meshes + primitives

Dojo[13] NCP Implicit (not considered)
Ours NCP Implicit meshes + primitives

∗Performances are degraded for meshes over 20 vertices

differentiate, which becomes quickly prohibitive. Following the advent of the differentiable pro-
gramming paradigm, DiffTaichi [3] and NeuralSim [4] propose to exploit Automatic Differentiation
to differentiate through simplified contact models and geometries. In this vein, Brax [5] and MuJoCo
MJX build on JAX [6] auto-diff and hardware acceleration capabilities to compute gradients through
the computational graph. Because collision detection and contact forces involve iterative algorithms,
the cost of computing gradients scales with the number of iterations performed during the evaluation
of the forward dynamics. Alternatively, inspired by differentiable optimization [7], multiple works
propose to apply implicit differentiation to a linear complementarity problem (LCP) [8, 9, 10] or
mixed linear complementarity problem (MLCP) [11] relaxing the original nonlinear complementar-
ity problem (NCP). Implicit differentiation has been extended to the NCP case in [12, 13], but it
remains inefficient as it does not, for instance, exploit the structure induced by the kinematic chain.
Other approaches, such as [14], rely on compliant contact models and focus on differentiating with
respect to morphological parameters. For a comprehensive study of different contact models and the
impact of relaxing the original NCP on gradients, we refer the reader to [15, 16].

Contributions. In this paper, we present a comprehensive framework for differentiable simulation
that combines differentiable rigid-body dynamics, differentiable collision detection, and differen-
tiable contact resolution. We notably introduce an implicit differentiation scheme to compute the
gradients of the NCP associated with the frictional contact problem without any relaxation and chain
it with rigid body dynamics algorithms to finely exploit the kinematic sparsity of the problem. Our
approach achieves substantial computational speedups, with gradient computations up to 100 times
faster than current state-of-the-art methods in robotics, while avoiding any physical relaxation or
geometrical approximation on meshes. We validate the effectiveness of our method by applying it
to complex inverse problems, including the estimation of initial conditions and inverse dynamics
through contact. To support reproducibility and further research, we will make our code publicly
available after the review process.

Paper organization. In Sec. 2, we provide a background on collision detection, frictional dynamics,
rigid multi-body dynamics, and implicit differentiation techniques. Sec. 3 corresponds to the core
contribution of this paper. We specify the computational graph of a physics engine and explain
how the combination of gradients of rigid-body dynamics, collision detection, and contact forces
make simulation end-to-end differentiable. Additionally, we show how implicit differentiation and
rigid body algorithms can be leveraged to compute the derivatives of multibody frictional contact
problems efficiently, including collision geometry contributions. In Sec. 4, the efficiency of our
approach is benchmarked on several advanced robotics systems, and we leverage our differentiable
physics engine to tackle various estimation and control problems. Sec. 5 discusses this work’s
limitations and how it could set the stage for future developments in model-based approaches for
robotics.

2 Background

This section reviews the two fundamental stages of modern robotic simulators: collision detection,
contact modelling and multibody dynamics. We also review the notion of implicit differentiation,
which is at the core of our approach.

2



2.1 Collision detection

The collision detection phase identifies the contact points between the colliding geometries compos-
ing a simulation scene. Given two shapes and their relative poses, a collision detection algorithm
(e.g., GJK [17] combined with EPA [18]) computes a contact point and a contact normal, corre-
sponding to the direction separating the two bodies with minimal displacement. We define the
contact frame c with its origin at the contact point, and the Z axis aligned with the contact normal.
Collision detection algorithms often assume the geometries to be convex but existing algorithms
[19] can be employed during an offline preprocessing phase to decompose the nonconvex shapes
into convex sub-shapes.

Collision detection is inherently nonsmooth for non-strictly convex geometries [20]. Concretely,
this induces discontinuous contact points and normals. Thus, differentiating the contact point, the
contact normal, and the contact frame w.r.t. the body poses is challenging. [21] uses a smooth
approximation of the bodies to calculate the contact frame Jacobians. In contrast, [22] employs a
randomized smoothing approach to compute the derivatives of contact points and normals.

2.2 Frictional contact dynamics

Given a contact frame between two bodies, let λ denote the contact force and σ the contact velocity.
The Signorini condition provides a complementarity constraint 0 ≤ λN ⊥ σN ≥ 0, ensuring
the normal force is repulsive, bodies do not interpenetrate further, and no simultaneous separation
motion and contact force exist. The maximum dissipation principle (MDP) combined with the
frictional Coulomb law ∥λT ∥ ≤ µλN of friction µ states that λT ∈ argmaxy,∥y∥≤µλN

−y⊤σT

maximizes the power dissipated by the contact. These three principles are equivalent to the following
nonlinear complementarity problem (NCP)

Kµ ∋ λ ⊥ σ + Γµ(σ) ∈ K∗
µ, (1)

σ = Gλ+ g,

where G is the so-called Delassus matrix [23] that gives the system inverse inertia projected on the
contacts. It is a linear operator mapping contact forces to contact velocities. g is the free velocity
of the contact. Kµ is a second-order cone with aperture angle atan(µ), K∗

µ = K1/µ its dual cone
and Γµ(σ) = [0, 0, µ∥σT ∥] is the so-called De Saxcé correction [24, 25] enforcing the Signorini
condition [25, 16]. (1) can be solved by interior point methods [13], projected Gauss-Seidel [26] or
ADMM-based approaches [25, 27, 28].

2.3 Multibody frictional contact dynamics

We briefly introduce the simulation of rigid bodies in contact, a core component of physics engines.
We refer to [16] for a more detailed background. Let q ∈ Q ∼= Rnq denotes the joint position
vector with Q the configuration space, i.e., the space of minimal coordinates. The equations of a
constrained motion writes

M(q)v̇ + b(q,v)− τ = J⊤
c (q, c(q))λ, (2)

where we denote by v ∈ TqQ ∼= Rnv and τ ∈ T ∗
q Q ∼= Rnv the joint velocity vector and the joint

torque vector. v̇ is the time derivative of v. M(q) is the joint-space inertia matrix, and b(q,v)
includes terms related to the gravity, Coriolis, and centrifugal effects. Jc(q, c(q)) is the contact
Jacobian associated with the contact frame c(q) given by the collision detection on the system bodies
using the configuration q. In the following, we drop the dependency on the parameters when it is
explicit.

To deal with rigid-body dynamics and impacts, we use an impulse-based formulation [29] obtained
with the Euler symplectic scheme

v+ = v +∆t
(
v̇f +M−1J⊤

c λ
)
, (3)

3



where v̇f = M−1 (τ − b) is the free acceleration term and ∆t is the time step. The acceleration term
v̇f +M−1J⊤

c λ of (3) can be efficiently computed with the Articulated Body Algorithm (ABA) [30].
Next, we use the shorthand ABA(q,v, τ ,λ) = v̇f +M−1J⊤

c λ.

Multiplying (3) by Jc, we recover from the definition of the Jacobian Jcv
+ = σ = Gλ + g

associated to the NCP (1) in the case of multibody dynamics. This yields the expression of the
Delassus matrix G = JcM

−1J⊤
c and the free contact velocity vector g = Jc(v + ∆tv̇f ). For

poly-articulated rigid-body systems, G depends on q, and g depends on q,v, τ . In this respect, the
associated NCP is conditioned by q,v, τ . Note also that the contact Jacobian Jc depends on q, first
through the kinematic structure of the system and second through the contact frame c(q).

2.4 Implicit differentiation

As previously mentioned, the physically accurate contact forces denoted by λ∗ are implicitly de-
fined as the solution of the NCP (1), we write 0 = NCP(λ∗; q,v, τ ). By deriving the optimality
conditions, the implicit function theorem allows the computation of their gradients and corresponds
to the concept of implicit differentiation [7]. The theorem provides locally the derivatives of the
solution dλ∗ as a linear function of the other variable derivatives.

This approach has been successfully applied to differentiate Quadratic Programming (QP) problems
in [31] and generalized to convex cone programs [32] and LCPs [8]. More generally, it allows in-
corporating optimization layers in the differentiable programming paradigm. In Sec. 3.2, we extend
this approach to the NCP case and propose a method to compute the gradients of the contact forces
efficiently.

3 Efficient differentiable simulation

This section details the core contribution of this paper, namely a comprehensive framework for
differentiable simulation that combines differentiable rigid-body dynamics, differentiable collision
detection, and differentiable contact resolution We show the link between the derivatives of the
multibody dynamics, the frictional contact dynamics, and the derivatives of collision detection. We
introduce an efficient algorithmic solution to compute the derivatives associated with the contact
NCP by solving a reduced system of equations of minimal dimension resulting from its implicit
differentiation.

3.1 Chaining rigid-body dynamics derivatives and NCP derivatives

From Sec. 2, the simulation equations (3) can be restated using (ABA) and the solution to the (NCP)
problem (1) as

0 = NCP(λ∗; q,v, τ ) (4)
v+ = v +∆tABA(q,v, τ ,λ∗). (5)

Next, we consider forward-mode differentiation setup [33], i.e., we aim to compute the Jacobian dv+

dθ
where θ ∈ Rnp represents any subset of the inputs {q,v, τ} or physical parameters. Our approach
can be efficiently adapted to the reverse mode by applying the computational trick introduced in [31].

Differentiating (5) leads to

dv+

dθ
=

dv
dθ

+∆t

(
∂ABA
∂q

dq
dθ

+
∂ABA
∂v

dv
dθ

+
∂ABA
∂τ

dτ
dθ

)
︸ ︷︷ ︸

dv+

dθ

∣∣∣
λ=λ∗

+∆t
∂ABA
∂λ

dλ∗

dθ
, (6)

where we identify the term dv+

dθ

∣∣∣
λ=λ∗

of derivatives, considering that λ∗ does not vary. The ABA

derivatives ∂ABA
∂q,v,τ and ∂ABA

∂λ = M−1(q)J⊤
c (q) can be efficiently computed via rigid-body algo-

rithms [34] and are, for instance, available in Pinocchio [35]. At this stage, it is worth noting that

4



∂ABA
∂q also depends on the geometry of the contact through the contact Jacobian Jc(q, c(q)). The

classical ABA rigid body algorithm gives the derivatives related to the first variable, and we need
to add a term related to the variations of Jc induced by the variation of the contact point c(q) (see
Section 3.4).

Computing the sensitivity of the contact forces dλ∗

dθ is also challenging as λ∗ is obtained implicitly by
solving a NCP (1) which depends on q, v and τ through G and g. Notably, the solutions of the NCP
are intrinsically nonsmooth, corresponding to the solution of a differential inclusion problem [25].
To understand the nonsmoothness of the NCP solutions, consider the case of a contact force either
(i) saturating the Coulomb cone or (ii) lying strictly inside the cone. In case (i), the contact force
variations must lie on the tangent plane to the cone at this force value, while in case (ii), no restriction
on the contact force variations applies. The derivatives do not lie on the constraint manifolds in
these two cases. Next, we detail how implicit differentiation of (4) can be leveraged to compute
them precisely at a limited computational cost.

3.2 Implicit differentiation of the NCP

The dynamics induced by the NCP (1) is inherently nonsmooth as it can switch on three modes.
These modes correspond to the active set of (1) and result in different gradients for the contact
dynamics. Our approach considers scenarios with multiple contact points and requires to identify
the mode for each contact. For clarity purposes, we present the equations for a single contact point
in the case of each of the three modes.

Mode 1 - Breaking contact (brk). This mode corresponds to the case where the contact is separat-
ing (σN > 0), which is induced by the Signorini condition that λ∗ = 0. This mode can be treated
separately from the other two modes, as the contact force is zero and the contact point velocity is
not constrained, yielding

dλ∗

dθ
= 0. (7)

Mode 2 - Sticking contact (stk). In this mode, the contact point is not moving (σ = 0), which
yields the same equations as a bilateral constraint of an attached point Gλ∗+ g = 0. Differentiating
this constraint gives the following linear equations on dλ∗

dθ

G
dλ∗

dθ
= −

(
dG
dθ

λ∗ +
dg

dθ

)
. (8)

d

Figure 1: Illustration of the sliding
mode. λ∗ lives in the boundary of the
cone Kµ in the direction opposite to
σ = σT and the variation dλ∗ lies in-
side the tangent plane.

Mode 3 - Sliding contact (sld). When evolving in this
regime, the contact point moves on the contact surface,
which implies a null normal velocity (σN = 0) and a non-
null tangential velocity (∥σT ∥ > 0). Moreover, from the
MDP, tangential contact forces should lie on the bound-
ary of the cone and in the opposite direction of the tan-
gential velocity (λ∗

T = −µλ∗
N

σT

∥σT ∥ ). This additionally

implies that dλ∗

dθ should be in the plane tangent to the fric-
tion cone as illustrated in Fig. 3.2 and allows reducing the
search space to a 2D plane via a simple change of variable
dλ∗

dθ = Rdλ̃
dθ where R =

(
λ

∥λ∥ ez × σT

∥σT ∥

)
∈ R3×2.

Therefore, differentiating these equations yields the fol-
lowing conditions on the gradients

G̃
dλ̃

dθ
= −R⊤P

(
dG

dθ
λ∗ +

dg

dθ

)
, (9)

5



where P =

(
H(σT ) 02×1

01×2 1

)
∈ R3×3, H(x) = 1

α

(
Id − x

∥x∥
x

∥x∥
⊤
)
∈ R2×2, G̃ = R⊤PGR +Q

with Q =

(
0 0
0 1

)
∈ R2×2 and α = ∥σT ∥

µλN
. We refer to the appendix for the detailed derivation.

3.3 Efficient computation: exploiting kinematic-induced sparsity

One should first identify the active contact modes to obtain the equations of all contact points. We
denote Abrk, Astk, and Asld as the sets of contact indices corresponding to the breaking, sticking,
and sliding contacts respectively. The dynamics of the different contacts are coupled through the
Delassus matrix G. Thus, we construct a matrix A ∈ R(3nstk+2nsld)×(3nstk+2nsld) where from G
we remove the blocks related to Abrk and modify the lines and columns of G related to Asld by
following the pattern of G̃ presented in (20). Once this is done, the reduced linear system on X , the
stacking of dλ∗ and dλ̃, is obtained by concatenating the corresponding right-hand side of (8) and
(20). We obtain the linear system corresponding to implicit differentiation

AX = −B

(
dG

dθ
λ∗ +

dg

dθ

)
, (10)

where B is block diagonal with identity for blocks of Astk and the basis change R⊤P for blocks of
Asld; the complete construction is given in the Appendix.

Computing the right-hand side of (10) requires evaluating dG
dθ λ

∗+ dg
dθ . By recalling that Gλ∗+ g =

Jcv
+ is the contact point velocity, this term exactly corresponds to the derivatives wrt θ of the

contact point velocity with λ∗ taken constant. We have

dG
dθ

λ∗ +
dg

dθ
= Jc

dv+

dθ

∣∣∣∣
λ=λ∗

+
dJcv+

dθ

∣∣∣∣
v=v+

. (11)

The first term is already computed thanks to the ABA derivatives (6) [34], and the second term
dJcv

+

dθ

∣∣∣
v=v+

, which is the derivatives of the contact velocity with v+ assumed to be constant, can
be computed at a reduced cost via the partial derivatives of the forward kinematics [34] evaluated in
q,v+. This allows us to avoid the expensive computation of dG

dθ as it is a tensor in general, while

only its product with λ is required. It is worth noting at this stage that the term dJcv
+

dθ

∣∣∣
v=v+

also
depends on the geometry of the contact. Therefore, computing gradients w.r.t. to the configuration
q requires evaluating an additional term for the variations of Jc induced by the variations of contact
points on the local geometries [22] and presented next.

Finally, to obtain dλ∗

dθ , we solve the linear system (10) using a QR decomposition of A before pro-
jecting back the reduced variables dλ̃ in R3. At this stage, it is worth noting that these gradients
are computed given the current active set, and thus they do not capture the information on the con-
tact modes boundary. Still, this is possible by combining our approach with smoothing techniques
explored in [36, 37, 38].

3.4 Collision detection contribution

The collision detection phase depends on the body poses induced by the configuration q. Thus,
when θ depends on q, one must consider the variation of the contact given variations of q. Recent
work on differentiable collision detection [22, 21] allows computing the derivative of the normal
and contact point w.r.t. the poses of the bodies.

By choosing a function that constructs a contact frame c from a contact point and its normal, we
compute the derivative of this frame w.r.t. the body poses. Chaining this derivative with the usual
kinematics Jacobian, which relates the variation of q to the variation of body poses, one can obtain
dc
dθ .

The frame c intervenes in Jc through a change of frame (the adjoint of the placement). By leveraging
spatial algebra[30] (see the appendix for the details), we calculate ∂J⊤

c λ∗

∂c and ∂Jcv
+

∂c . We add the

6



Figure 2: The robotics systems used to evaluate our approach range from simple systems such as
MuJoCo’s half-cheetah (Left) to more complex high-dof robots such as Unitree’s Go1 (Center) and
H1 (Right)

Half-cheetah Humanoid UR5 Go1 H1 Atlas
Number of DoFs 12 27 7 18 25 36

Number of geometries 9 20 9 39 25 89
Number of collision pairs 27 161 26 494 255 3399

Number of vertices per mesh N/A N/A 200 N/A 700 N/A

Table 2: Details of scenarios for computational timings. For the number of vertices per mesh, N/A
indicates a scenario which does not contain any mesh.

first collision term ∂J⊤
c λ∗

∂c
dc
dθ in dv+

dθ

∣∣∣
λ=λ∗

and the second collision term ∂Jcv
+

∂c
dc
dθ in dJcv

+

dθ

∣∣∣
v=v+

to
account for the variation of Jc due to the variation of the contact points. The complete details of the
terms and simulation derivative dv+

dθ are reported in the appendix.

4 Experiments

In this section, we first demonstrate state-of-the-art computational timings when computing simu-
lation gradients for various robotic systems (Fig. 2). Second, we apply our approach to solve two
inverse problems involving contact dynamics: retrieving an initial condition that leads to a target fi-
nal state and finding a torque that yields a null acceleration on a quadruped. Additional experiments
are available in the Appendix.

Implementation details. We have implemented our analytical derivatives in C++ for efficiency.
We leverage open-source software of the community: Eigen [39] for efficient linear algebra, Pinoc-
chio [35] for fast rigid body dynamics and their derivatives, and HPP-FCL [40] for high-speed
collision detection. The code associated with this paper will be released as open-source as part of
the Simple simulator. All the experiments are performed on a single core of an Apple M3 CPU.

4.1 Timings

The computational efficiency of our approach is evaluated by measuring the average time required to
compute the full Jacobian of the simulator, i.e., dv+

dq,v,τ , along a trajectory. We consider various sce-
narios ranging from simple systems composed of basic geometry primitives (MuJoCo’s half-cheetah
and humanoid) to more complex and realistic robots with multiple DoFs and complex geometries
(UR5, Unitree Go1, and Boston Dynamics Atlas). Tab. 2 reports the numbers associated with the
different robots considered. To stabilize the simulation behaviors, we compute contact collision
patches (composed of 4 contact points each), thus substantially increasing the dimensions of the
problem to solve.

Tab. 3 demonstrates computational timings for gradient computation that are of the same order of
magnitude as simulation and significantly faster than central finite differences. As another point of
comparison, Nimble [10] requires 1ms and 16ms on half-cheetah and Atlas, corresponding to an
approximate speedup factor of 100 for our method. In Tab. 3, we also compare our approach to
MuJoCo MJX GPU simulation pipeline and find it to be competitive even though it operates on a
single CPU core. Importantly, our performance gain is obtained although we work on the unrelaxed
NCP and with full meshes descriptions (cf. Tab. 1).

7

https://github.com/Simple-Robotics/Simple


Half-cheetah Humanoid UR5 Go1 H1 Atlas Framework
Simulation 15.8± 7.1 42.6± 24.7 12.3± 6.1 62.6± 18.5 139.3± 125.4 127.3± 32.9 Ours

Implicit gradients 14.7± 7.0 47.9± 23.8 4.1± 3.8 93.0± 32.0 54.3± 34.5 95.2± 37.6 Apple M3 CPU
Finite differences 1.1e3± 0.5e3 5.5e3± 3.5e3 0.4e3± 0.2e3 6.6e3± 1.8e3 17.6e3± 14.6e3 26.7e3± 6.e3

Simulation 5.5± 2.0 40.3± 40.1 12.3± 4.0 15.8± 7.0 59.3± 31.0 85.1± 34.4 MuJoCo
Finite differences 0.34e3± 0.13e3 2.9e3± 0.8e3 0.39e3± 0.10e3 9.9e3± 0.16e3 5.9e3± 1.4e3 54.3e3± 1.4e3 Apple M3 CPU

Simulation 1.0± 0.0 2.3± 0.0 N/A N/A N/A N/A MJX
Autodiff gradients 3.7± 0.0 103.2± 0.3 N/A N/A N/A N/A Nvidia A100 GPU

Table 3: Comparative analysis between ours, MuJoCo, and MJX frameworks. Timing statistics
(mean and standard deviation in microseconds) for simulation, gradient, and finite-differences com-
putation for one simulation step. For MJX, N/A denotes scenarios where geometries were not sup-
ported.

4.2 Inverse problems

Estimating initial conditions. As a first application of differentiable simulation, we aim at retriev-
ing the initial condition θ (either the initial velocity v0 or an initial impulse τ0), leading to a target
final state q∗

T after T time steps. Here, we consider the case of a cube thrown on the floor evolving
in a sliding mode. The problem can be written as:

min
θ

1

2
∥qT (θ)− q∗

T ∥
2
2 , (12)

where qT is the final configuration and depends on the initial velocity and impulse. Our forward-
mode differentiation allows us to efficiently compute the Jacobian of qT wrt θ. We leverage this
feature to implement a Gauss-Newton (GN) approximation of the Hessian of (12). Fig. 3 demon-
strates the benefits of using our implicit gradients over finite-differences in order to reach a precise
solution of (12). Moreover, exploiting the full Jacobian in a quasi-Newton algorithm also reduces
the number of iterations compared to a vanilla gradient descent.

Retrieving the initial impulse on the cube τ0 is a challenging nonsmooth and nonconvex optimiza-
tion problem, which can explain the plateau reached by our vanilla Gauss-Newton implementation.
Working on dedicated nonsmooth optimization algorithms is a promising research direction that
could lead to higher-quality solutions.

Inverse dynamics through contacts. We evaluate our approach on an Inverse Dynamics (ID) task
involving contacts. In particular, we aim at finding the torque on actuators τact leading to a null
acceleration for a Unitree Go1 quadrupedal robot in a standing position (q,v). By denoting S the
actuation matrix, the ID problem can be formulated as follows:

min
τact

1

2

∥∥v+(q,v, ST τact)− v∗∥∥2
2
, (13)

where the initial v and target v∗ velocities are null in this example. As previously explained, we use
the Jacobians computed by our differentiable simulator with a Gauss-Newton algorithm. As shown
by Fig. 4, the problem is solved with high accuracy in only a few iterations (approx. 10 to reach an

0 50 100 150 200 250 300
Iteration

10−16

10−13

10−10

10−7

10−4

10−1

102

Co
st

Cost when optimizing for v0

Implicit + GD
Implicit + GN
Finite diff + GD
Finite diff + GN

0 50 100 150 200 250 300
Iteration

10−16

10−13

10−10

10−7

10−4

10−1

102

Gr
ad

ie
nt

 n
or

m

Gradient norm when optimizing for v0

Implicit + GD
Implicit + GN
Finite diff + GD
Finite diff + GN

0 50 100 150 200 250 300
Iteration

10−16

10−13

10−10

10−7

10−4

10−1

102

Co
st

Cost when optimizing for τ0

Implicit + GD
Implicit + GN
Finite diff + GD
Finite diff + GN

0 50 100 150 200 250 300
Iteration

10−16

10−13

10−10

10−7

10−4

10−1

102

Gr
ad

ie
nt

 n
or

m

Gradient norm when optimizing for τ0

Implicit + GD
Implicit + GN
Finite diff + GD
Finite diff + GN

Figure 3: Estimation of initial conditions. A Gauss-Newton (GN) algorithm can leverage the
efficient implicit differentiation to accurately retrieve the initial velocity v0 and impulse τ0. On the
third and fourth figures, the black curve representing Gradient Descent with finite differences rises
due to the excessively large estimated gradients. When at the boundary of a contact mode, the norm
of the finite differences gradients becomes inversely proportional to the step size used.

8



0 50 100 150 200 250 300
Iteration

10−16

10−13

10−10

10−7

10−4

10−1

102

Co
st

Cost vs. optimization iterations

Implicit + GD
Implicit + GN
Finite diff + GD
Finite diff + GN

0 50 100 150 200 250 300
Iteration

10−16

10−13

10−10

10−7

10−4

10−1

102

Gr
ad

ie
nt

 n
or

m

Gradient norm vs. optimization iterations

Implicit + GD
Implicit + GN
Finite diff + GD
Finite diff + GN

Figure 4: Contact inverse dynamics on an underactuated Go1 quadruped can be efficiently per-
formed via a Gauss-Newton algorithm by using Jacobians of our differentiable physics engine.

error of 1e − 5). Just like in the initial conditions estimation setup, implicit gradients allow us to
solve the problem with a higher precision than finite differences.

5 Limitations

This paper introduces an end-to-end differentiable physics pipeline for robotics based on the implicit
differentiation of the non-relaxed NCP for contacts. By avoiding any relaxation, we prevent the
appearance of unphysical simulation artifacts. Moreover, exploiting the sparsity induced by the robot
kinematic chains and leveraging the derivatives of rigid body algorithms allows us to achieve state-
of-the-art timings, with a speed-up of at least 100 compared to alternative solutions of the state of
the art. In an MPC context where the dynamics and its derivatives are evaluated at a high frequency,
the gains in physical realism and efficiency could determine the controller’s overall performance.

Yet, as the NCP induces inherently non-smooth dynamics, exploiting its gradients requires dedicated
algorithms when addressing downstream optimization tasks. Some previous works [41, 42, 37]
leverage randomized smoothing techniques that provide smooth gradient estimates from simulation
and gradient samples. Alternative solutions relax the physics, either explicitly [2, 1, 43] or implicitly,
by leveraging interior-points (IP) methods [13].

Similarly to existing robotic simulators (e.g., MuJoCo, Bullet, DART), this paper models contact
interactions as vanilla 3d contact points, while richer but more complex contact models exist. One
promising research direction could consider extending this work towards deformable contact inter-
actions to enhance simulator realism, such as in [44].

Conclusion. In future work, we plan to integrate our qualitative gradient approach with recent ad-
vancements in control frameworks to tackle more complex robotics tasks. Specifically, this paper
introduces an efficient method for computing physics gradients, which paves the way for first-order
policy learning algorithms such as SHAC [45]. It is also worth noticing that our approach is not
limited to rigid-body robots, but could also be leveraged for soft dynamics in general to design and
control soft robots [46] and could be adapted to use implicit integrator as in [47]. The proposed dif-
ferentiable simulation of an unrelaxed physics model is a crucial step toward reducing the Sim2Real
gap [48], and future work may adapt learning algorithms to effectively achieve this goal. Finally,
we hope this work will serve as a catalyzer in the robotics and learning communities and moti-
vate the development of new reinforcement learning and trajectory optimization methods leveraging
simulation gradients in order to accelerate the discovery of complex robot movements in contact.

Acknowledgments

This work was supported in part by the French government under the management of Agence
Nationale de la Recherche (ANR) as part of the ”Investissements d’avenir” program, references
ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and ANR-22-CE33-0007 (INEXACT), the European
project AGIMUS (Grant 101070165), the Louis Vuitton ENS Chair on Artificial Intelligence and the
Casino ENS Chair on Algorithmic and Machine Learning. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the funding agencies.

9



References
[1] I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-

invariant optimization. ACM Transactions on Graphics (ToG), 31(4):1–8, 2012.

[2] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[3] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi:
Differentiable programming for physical simulation. In International Conference on Learning
Representations, 2019.

[4] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. NeuralSim: Augment-
ing differentiable simulators with neural networks. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2021. URL https://github.com/

google-research/tiny-differentiable-simulator.

[5] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax-a differ-
entiable physics engine for large scale rigid body simulation. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

[6] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[7] M. Blondel and V. Roulet. The elements of differentiable programming. arXiv preprint
arXiv:2403.14606, 2024.

[8] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end
differentiable physics for learning and control. Advances in neural information processing
systems, 31, 2018.

[9] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and S. Coros. Add: Analyt-
ically differentiable dynamics for multi-body systems with frictional contact. ACM Transac-
tions on Graphics (TOG), 39(6):1–15, 2020.

[10] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu. Fast and feature-complete differen-
tiable physics engine for articulated rigid bodies with contact constraints. In Robotics: Science
and Systems, 2021.

[11] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin. Efficient differentiable simulation of articulated
bodies. In ICML, 2021.

[12] Q. Le Lidec, I. Kalevatykh, I. Laptev, C. Schmid, and J. Carpentier. Differentiable simulation
for physical system identification. IEEE Robotics and Automation Letters, 6(2):3413–3420,
2021.

[13] T. A. Howell, S. Le Cleac’h, J. Bruedigam, J. Z. Kolter, M. Schwager, and Z. Manchester.
Dojo: A Differentiable Simulator for Robotics. 2022.

[14] J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik, S. Sueda, and P. Agrawal. An End-to-
End Differentiable Framework for Contact-Aware Robot Design. In Proceedings of Robotics:
Science and Systems, Virtual, July 2021. doi:10.15607/RSS.2021.XVII.008.

[15] Y. D. Zhong, J. Han, and G. O. Brikis. Differentiable physics simulations with con-
tacts: Do they have correct gradients w.r.t. position, velocity and control? arXiv preprint
arXiv:2207.05060, 2022.

10

https://github.com/google-research/tiny-differentiable-simulator
https://github.com/google-research/tiny-differentiable-simulator
http://github.com/google/jax
http://dx.doi.org/10.15607/RSS.2021.XVII.008


[16] Q. Le Lidec, W. Jallet, L. Montaut, I. Laptev, C. Schmid, and J. Carpentier. Contact models in
robotics: a comparative analysis. 2023.

[17] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the distance
between complex objects in three-dimensional space. IEEE Journal on Robotics and Automa-
tion, 4(2):193–203, 1988.

[18] G. Van den Bergen. Proximity Queries and Penetration Depth Computation on 3D Game
Objects. In Game Developers Conference, 2001.

[19] X. Wei, M. Liu, Z. Ling, and H. Su. Approximate convex decomposition for 3d meshes with
collision-aware concavity and tree search. ACM Transactions on Graphics (TOG), 41(4):1–18,
2022.

[20] A. Escande, S. Miossec, M. Benallegue, and A. Kheddar. A strictly convex hull for computing
proximity distances with continuous gradients. IEEE Transactions on Robotics, 30(3):666–
678, 2014.

[21] K. Tracy, T. A. Howell, and Z. Manchester. Differentiable collision detection for a set of convex
primitives. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
3663–3670. IEEE, 2023.

[22] L. Montaut, Q. Le Lidec, A. Bambade, V. Petrik, J. Sivic, and J. Carpentier. Differentiable
collision detection: a randomized smoothing approach. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 3240–3246. IEEE, 2023.

[23] É. Delassus. Mémoire sur la théorie des liaisons finies unilatérales. In Annales scientifiques de
l’École normale supérieure, volume 34, pages 95–179, 1917.

[24] G. de Saxcé and Z.-Q. Feng. The bipotential method: A constructive approach to design the
complete contact law with friction and improved numerical algorithms. Mathematical and
Computer Modelling, 28(4-8):225–245, Aug. 1998. doi:10.1016/S0895-7177(98)00119-8.
URL https://hal.archives-ouvertes.fr/hal-03883288.

[25] V. Acary, M. Brémond, and O. Huber. On solving contact problems with Coulomb friction:
formulations and numerical comparisons. Research Report RR-9118, INRIA, Nov. 2017. URL
https://hal.inria.fr/hal-01630836.

[26] F. Jourdan, P. Alart, and M. Jean. A gauss-seidel like algorithm to solve frictional contact
problems. Computer methods in applied mechanics and engineering, 155(1-2):31–47, 1998.

[27] A. Tasora, D. Mangoni, S. Benatti, and R. Garziera. Solving variational inequalities and cone
complementarity problems in nonsmooth dynamics using the alternating direction method of
multipliers. International Journal for Numerical Methods in Engineering, 122(16):4093–4113,
2021.

[28] J. Carpentier, Q. Le Lidec, and L. Montaut. From compliant to rigid contact simulation: a
unified and efficient approach. Robotics: Science and Systems, 2024.

[29] B. Mirtich and J. Canny. Impulse-based simulation of rigid bodies. In Proceedings of the 1995
symposium on Interactive 3D graphics, pages 181–ff, 1995.

[30] R. Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[31] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[32] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex
optimization layers. Advances in neural information processing systems, 32, 2019.

11

http://dx.doi.org/10.1016/S0895-7177(98)00119-8
https://hal.archives-ouvertes.fr/hal-03883288
https://hal.inria.fr/hal-01630836


[33] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic
differentiation. SIAM, 2008.

[34] J. Carpentier and N. Mansard. Analytical derivatives of rigid body dynamics algorithms. In
Robotics: Science and systems (RSS 2018), 2018.

[35] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and N. Mansard.
The pinocchio c++ library – a fast and flexible implementation of rigid body dynamics algo-
rithms and their analytical derivatives. In IEEE International Symposium on System Integra-
tions (SII), 2019.

[36] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake. Do differentiable simulators give better
policy gradients? In International Conference on Machine Learning, pages 20668–20696.
PMLR, 2022.

[37] T. Pang, H. T. Suh, L. Yang, and R. Tedrake. Global planning for contact-rich manipulation
via local smoothing of quasi-dynamic contact models. IEEE Transactions on Robotics, 2023.

[38] S. Zhang, W. Jin, and Z. Wang. Adaptive barrier smoothing for first-order policy gradient with
contact dynamics. In International Conference on Machine Learning, pages 41219–41243.
PMLR, 2023.

[39] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[40] J. Pan, S. Chitta, J. Pan, D. Manocha, J. Mirabel, J. Carpentier, and L. Montaut. HPP-FCL
- An extension of the Flexible Collision Library, Mar. 2024. URL https://github.com/

humanoid-path-planner/hpp-fcl.

[41] H. J. T. Suh, T. Pang, and R. Tedrake. Bundled gradients through contact via randomized
smoothing. IEEE Robotics and Automation Letters, 7(2):4000–4007, 2022.

[42] Q. Le Lidec, F. Schramm, L. Montaut, C. Schmid, I. Laptev, and J. Carpentier. Leveraging ran-
domized smoothing for optimal control of nonsmooth dynamical systems. Nonlinear Analysis:
Hybrid Systems, 52:101468, 2024.

[43] G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park. Contact-implicit mpc: Controlling
diverse quadruped motions without pre-planned contact modes or trajectories. arXiv preprint
arXiv:2312.08961, 2023.

[44] R. Elandt, E. Drumwright, M. Sherman, and A. Ruina. A pressure field model for fast, robust
approximation of net contact force and moment between nominally rigid objects. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8238–
8245. IEEE, 2019.

[45] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin. Accel-
erated policy learning with parallel differentiable simulation. In International Conference on
Learning Representations, 2021.

[46] C. Della Santina, C. Duriez, and D. Rus. Model-based control of soft robots: A survey of the
state of the art and open challenges. IEEE Control Systems Magazine, 43(3):30–65, 2023.

[47] A. M. Castro, F. N. Permenter, and X. Han. An unconstrained convex formulation of compliant
contact. IEEE Transactions on Robotics, 39(2):1301–1320, 2023. doi:10.1109/TRO.2022.
3209077.

[48] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, M. Mozifian, F. Golemo, C. Atkeson, D. Fox,
K. Goldberg, J. Leonard, C. Karen Liu, J. Peters, S. Song, P. Welinder, and M. White. Sim2real
in robotics and automation: Applications and challenges. IEEE Transactions on Automation
Science and Engineering, 18(2):398–400, 2021. doi:10.1109/TASE.2021.3064065.

12

https://github.com/humanoid-path-planner/hpp-fcl
https://github.com/humanoid-path-planner/hpp-fcl
http://dx.doi.org/10.1109/TRO.2022.3209077
http://dx.doi.org/10.1109/TRO.2022.3209077
http://dx.doi.org/10.1109/TASE.2021.3064065


Appendix

This appendix document reports the details associated with the submission entitled End-to-End and
Highly-Efficient Differentiable Simulation for Robotics. In particular, we provide detailed equations
related to the three modes of the NCP implicit differentiation, the contributions of collision detection,
and the detailed expression of multibody derivatives accounting for contact and collision derivatives.

Appendix A - Sliding mode

In this subsection, we detail the equations (Eq. (9) of the paper) of the sensitivity analysis of the
contact force in the case of a sliding mode (∥σT ∥ > 0).

In sliding mode, both the contact forces and the contact point velocity are on the border of their
cone. Thus, from the NCP we have:

∥λT ∥ = µλN (14a)
σN = 0 (14b)

λ⊤(σ + Γµ(σ)
)
= 0 (14c)

σ = Gλ+ g, (14d)

which is equivalent to:

λT = −µλN
σT

∥σT ∥
(15a)

σT = GTλ+ gT (15b)
GNλ+ gN = 0. (15c)

By differentiating, we get the following system on the derivatives:

Adλ = − 1

α
HdσT (16a)

dσT = GT dλ+ (dGTλ+ dgT ) (16b)
GNdλ = − (dGNλ+ dgN ) , (16c)

where K = (Id2 µuT ) ∈ R2×3 and H =
(
Id − uTu

⊤
T

)
∈ R2×2 with uT = σT

∥σT ∥ and α = ∥σT ∥
µλN

.
We rewrite as (

1

α
HGT +K

)
dλ = − 1

α
H (dGTλ+ dgT ) (17a)

GNdλ = − (dGNλ+ dgN ) . (17b)

Stacking the two equations yields:

(PG+ K̃)dλ = −P (dGλ+ dg), (18)

where we introduce P =

(
1
αH 02×1

01×2 1

)
∈ R3×3 and K̃ =

(
K

01×3

)
∈ R3×3.

Because λ is constrained to stay on the boundary of the cone, its variations dλ live in the tangent
2D plane whose basis is R =

(
λ

∥λ∥ ez × σT

∥σT ∥

)
∈ R3×2. Applying the change of variable

dλ = Rdλ̃ and multiplying the previous system 18 by R⊤ allows getting a linear system of reduced
dimension:

G̃dλ̃ = −R⊤P (dGλ+ dg) , (19)

where G̃ = R⊤PGR + Q ∈ R2×2 with Q = R⊤K̃R =

(
0 0
0 1

)
∈ R2×2. Hence the final

expression when taking derivative w.r.t θ in the optimal force λ∗

G̃
dλ̃

dθ
= −R⊤P

(
dG

dθ
λ∗ +

dg

dθ

)
. (20)

13



Appendix B - Implicit NCP gradient system

In this subsection, we detail the final system solved to compute the gradients of the NCP (equation
(10) of the paper).

Following the paper notations, we denote Abrk, Astk, and Asld as the sets of contact indices corre-
sponding to the breaking, sticking, and sliding contacts respectively and nbrk, nstk, and nsld their
cardinals and n = nbrk + nstk + nsld the total number of contacts. For the implicit gradients sys-
tem, we removed the dλ variables associated with contacts in Abrk and sorted the remaining ones
by putting first the components associated with the contacts in Astk before the reduced ones dλ̃ of
Asld. Then the total variation of λ is dλ = CX ∈ R3n with

X =



dλ(1)

...
dλ(nstk)

dλ̃(1)

...
dλ̃(nsld)


∈ R3nstk+2nsld (21)

C =


03nbrk,3nstk 03nbrk,2nsld

Id3nstk,3nstk 03nstk,2nsld

03nsld,3nstk

R(1)

. . .
R(nsld)

 ∈ R3n×(3nstk+2nsld) (22)

Note that in the sticking case, the right-hand side is dGλ+ dg and the left-hand side is Gdλ and for
the sliding mode, the right-hand side is multiplied by R⊤P and the right-hand side is composed by
R⊤P and R plus an additional term due to Q. So if we introduce B and A as

B =


03nstk,3nbrk Id3nstk,3nstk

03nstk,3nsld

02nsld,3nbrk 02nsld,3nstk

R(1)⊤P (1)

. . .
R(nsld)⊤P (nsld)

 ∈ R(3nstk+2nsld)×3n

(23)

A = BGC +


03nstk,3nstk 03nbrk,2nsld

02nsld,3nbrk

Q
. . .

Q

 ∈ R(3nstk+2nsld)×(3nstk+2nsld) (24)

where G is the complete Delassus matrix that induces coupling between the different contacts. We
recover the linear system of the implicit gradient

AX = −B(dGλ+ dg), (25)

and, finally, the derivative w.r.t θ of the force taken in the optimal force λ∗ as

dλ∗

dθ
= −CA−1B

(
dG
dθ

λ∗ +
dg

dθ

)
. (26)

Details on implementation. In practice, the matrix B and C are not computed, but we directly work
on G and (dGλ + dg) by discarding the right lines and modifying groups of columns and lines to
exploit the sparsity of B and C. We compute the matrix A and its inverse using a QR decomposition.

Appendix C - Collision detection contribution

Given one contact frame c between body 1 and body 2, the contact Jacobian is

Jc = E(cX1J1 − cX2J2), (27)

14



where E =

(
Id3 03,3
03,3 03,3

)
is an operator that allows the extraction of the linear part, and J1, J2 are

the kinematic Jacobian of the bodies 1 and 2

Here, we present the terms ∂Jcv
+

∂c
dc
dθ and ∂J⊤

c λ∗

∂c
dc
dθ from Section 3.3 using c to be agnostic of the

choice of representation of the contact frame c. In practice, we use HPP-FCL to get the placement
of c relative to the world given the placement of bodies 1 (0M1(q)) and 2 (0M2(q)) relative to the
world. In general, we can write:

0Mc(q) = CD(0M1(q),
0M2(q)), (28)

where CD is an acronym for collision detection. We are interested in the derivatives of Jcv when J1
and J2 are considered constant because their derivation is already considered in the other terms. In
this setting, we rewrite (27) apply to a joint velocity v as

Jcv = E(Ad0M−1
c (q)0M1(q)

J1v −Ad0M−1
c (q)0M2(q)

J2v), (29)

where Ad denotes the adjoint operator on SE(3) to explicitly show the dependency in the variables.
We note that only q appears in (29).

First, we have

d0Mc

dθ
=

∂CD
∂0M1

J1
dq
dθ

+
∂CD
∂0M2

J2
dq
dθ

, (30)

which can be computed using the randomized smoothed derivatives presented in Differentiable col-
lision detection: a randomized smoothing approach [16] in the main paper.

Second, with the rules of spatial algebra, we have for a vector x of the lie algebra, and placement
M , Ma, Mb in SE(3)

d(AdM x) = AdM addM x = − adAdM x AdM dM (31a)
d(M−1

a Mb) = −AdM−1
b Ma

dMa + dMb, (31b)

with ad the small adjoint on the Lie algebra and by the chain rule

d(AdM−1
a Mb

x) = adAd
M

−1
a Mb

x dMa −AdM−1
a Mb

adx dMb, (32)

so we have

d(Jcv) = E(adAdcM1
J1v d0Mc −AdcM1 adJ1v J1dq − adAdcM2

J2v d0Mc +AdcM2 adJ2v J2dq)

= E(adJcv d0Mc −AdcM1 adJ1v J1dq +AdcM2 adJ2v J2dq), (33)

using the linearity of ad in the index variable. And finally, we obtain the term

∂Jcv
+

∂c

dc
dθ

= E

[(
adJcv+

∂CD
∂0M1

− cX1 adJ1v+

)
J1 −

(
adJcv+

∂CD
∂0M2

− cX2 adJ2v+

)
J2

]
dq
dθ

.

To compute the ∂J⊤
c λ∗

∂c
dc
dθ we use the previous term and the duality stating that for any λ and v we

have ⟨J⊤
c λ,v⟩ = ⟨λ, Jcv⟩. Taking derivatives we have

⟨∂(J⊤
c λ)dq,v⟩ = ⟨λ, ∂(Jcv)dq⟩

= ⟨λ, Lv⟩
= ⟨L⊤λ,v⟩, (34)

and because it is true for any v we have ∂(Jcv)dq = L⊤λ. We calculate:

∂(Jcv)dq = E

[(
adJcv

∂CD
∂0M1

− cX1 adJ1v

)
J1 −

(
adJcv

∂CD
∂0M2

− cX2 adJ2v

)
J2

]
dq

= Lv = −E

[(
ad ∂CD

∂0M1
J1dq Jc −

cX1 adJ1dq J1

)
−

(
ad ∂CD

∂0M2
dq Jc −

cX2 adJ2dq J2

)]
v,

(35)

15



using the anti-commutativity of ad. Then we have

L⊤λ = −
[(

J⊤
c ad⊤∂CD

∂0M1
J1dq −J⊤

1 adJ1dq
cX⊤

1

)
−
(
J⊤
c ad⊤∂CD

∂0M2
J2dq −J⊤

2 adJ2dq
cX⊤

2

)]
Eλ

= −
[(

J⊤
c PEλ

∂CD
∂0M1

J1 − J⊤
1 PcX⊤

1 Eλ J1

)
−

(
J⊤
c PEλ

∂CD
∂0M2

J2 − J⊤
2 PcX⊤

2 Eλ J2

)]
dq,

(36)

where P is the variable commutation of ad⊤. Precisely for all x in the Lie algebra and y in the
dual Lie algebra: ad⊤x y = Py x. For elements of dual spatial algebra y = [f,m] we have Py =(

0 f×
f× m×

)
. And finally, we obtain the second term

∂J⊤
c λ∗

∂c

dc
dθ

=

[(
J⊤
c PEλ∗

∂CD
∂0M2

− J⊤
2 PcX⊤

2 Eλ∗

)
J2 −

(
J⊤
c PEλ∗

∂CD
∂0M1

− J⊤
1 PcX⊤

1 Eλ∗

)
J1

]
dq
dθ

.

Details on implementation. Here, the terms are calculated for one contact. For multiple contacts,
∂Jcv

+

∂c
dc
dθ is the concatenation of the terms for individual contacts and ∂J⊤

c λ∗

∂c
dc
dθ is the sum of the

terms from each contacts. Note also that similarly to the kinematic Jacobians, the two terms can be
computed efficiently by exploiting the sparsity induced by the kinematic structure.

Appendix D - Complete simulation gradients expression

The complete expression of the simulation step derivative is

dv+

dθ
=

dv+

dθ

∣∣∣∣
λ=λ∗

−∆tM−1J⊤
c CA−1B

(
Jc

dv+

dθ

∣∣∣∣
λ=λ∗

+
dJcv+

dθ

∣∣∣∣
v=v+

+
∂Jcv

+

∂c

dc
dθ

)
,

with
dv+

dθ

∣∣∣∣
λ=λ∗

=
dv
dθ

+∆t

(
∂ABA
∂q

dq
dθ

+
∂ABA
∂v

dv
dθ

+
∂ABA
∂τ

dτ
dθ

+M−1 ∂J
⊤
c λ∗

∂c

dc
dθ

)
, (37)

dJcv+

dθ

∣∣∣∣
v=v+

=
∂FKV(q,v+, c)

∂q

dq
dθ

, (38)

where FKV(q,v+, c) is the forward kinematic velocity that gives the velocity of the origin of the
frame c when the system is in configuration q with joint velocity v+. A, B, C are as presented in
Appendix B and ∂Jcv

+

∂c
dc
dθ , ∂J⊤

c λ∗

∂c
dc
dθ are as presented in Appendix C.

Details on implementation. The partial derivatives ∂ABA
∂q,v,τ , ∂FKV

∂q and the term M−1(q)J⊤
c (q) can

be efficiently computed via rigid-body algorithm as implemented in Pinocchio.

The terms ∂Jcv
+

∂c
dc
dθ , ∂J⊤

c λ∗

∂c
dc
dθ , A, B and C can be computed efficiently jointly with the ABA

derivatives during forward and backward search of the kinematic tree to exploit its sparsity.

Baumgarte stabilization is often used in practice to prevent penetration errors from growing. The
correction is integrated by adding terms to the expression of g

g = Jcvf +
Φ(q)

∆t
−Kp

[
Φ(q)

∆t

]
−
−KdJcv (39)

where Kp and Kd are the gains of the corrector. In the case of sticking or sliding contacts we have
(Gλ+ g)N = 0 and expanding the expression of g yields

(Jcv
+)N = Kd(Jcv)N − (1−Kp)

Φ(q)

∆t
. (40)

Therefore, using a Baumgarte correction affects the derivative of the simulation. In particular, the
derivatives of the proportional term involve Φ and thus should be handled when computing the

16



derivatives of the collision detection. Differentiating the derivative term KdJcv is done similarly to
the Jcv

+ term i.e. via the Forward Kinematics derivatives. In more details, the term in parentheses
of (37) becomes

dG
dθ

+
dg
dθ

= Jc
dv+

dθ

∣∣∣∣
λ=λ∗

+
dJcv+

dθ

∣∣∣∣
v=v+

+
∂Jcv

+

∂c

dc
dθ

+
(1−Kp)

∆t

dΦ(q)
dθ

−KdJc
dv
dθ

−Kd
dJcv

dθ

∣∣∣∣
v=v

(41)

Appendix E - Additional experimental support

Figure 5: The differentiable simulator is used to find a control torque stabilizing various robotics
systems: a Unitree Go1 in a standing position with a 10kg mass on its back (Left) or in a ”hand-
stand” pose (Center) and a humanoid Unitree H1 in a ”push-up” pose (Right).

This subsection provides several additional experiments using our differentiable simulator to solve
contact inverse dynamics problems on underactuated robotics systems.

The considered problems, depicted in Fig. 5, are the following:

• A Unitree Go1 is stabilized in a standing position with a 10kg mass put on its back;

• A Unitree Go1 is stabilized in a ”hand-stand” pose;

• A Unitree H1 humanoid is stabilized in a ”push-up” pose.

In every case, the robots are stabilized by optimizing the torque on the actuators.

We refer to the video attached to this paper for more visualization of the experiments.

17


	Introduction
	Background
	Collision detection
	Frictional contact dynamics
	Multibody frictional contact dynamics
	Implicit differentiation

	Efficient differentiable simulation
	Chaining rigid-body dynamics derivatives and NCP derivatives
	Implicit differentiation of the NCP
	Efficient computation: exploiting kinematic-induced sparsity
	Collision detection contribution

	Experiments
	Timings
	Inverse problems

	Limitations

