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Constrained Articulated Body Algorithms
for Closed-Loop Mechanisms
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Abstract—Efficient rigid-body dynamics algorithms are in-
strumental in enabling high-frequency dynamics evaluation for
resource-intensive applications (e.g., model predictive control,
large-scale simulation, reinforcement learning), potentially on
resource-constrained hardware. Existing recursive algorithms
with low computational complexity are mostly restricted to
kinematic trees with external contact constraints or are sensi-
tive to singular cases (e.g., linearly dependent constraints and
kinematic singularities), severely impacting their practical usage
in existing simulators. This article introduces two original low-
complexity recursive algorithms, loop-constrained articulated
body algorithm (LCABA) and proxBBO, based on proximal
dynamics formulation for forward simulation of mechanisms
with loops. These algorithms are derived from first principles
using non-serial dynamic programming, depict linear complexity
in practical scenarios, and are numerically robust to singular
cases. They extend the existing constrained articulated body
algorithm (constrainedABA) to handle internal loops and the
pioneering BBO algorithm from the 1980s to singular cases. Both
algorithms have been implemented by leveraging the open-source
Pinocchio library, benchmarked in detail, and depict state-of-
the-art performance for various robot topologies, including over
6x speed-ups compared to existing non-recursive algorithms for
high degree-of-freedom systems with internal loops such as recent
humanoid robots.

I. INTRODUCTION

Simulating rigid-body dynamics efficiently and reliably
is an important and extensively researched [1] problem in
robotics. Efficient simulation is key to unlocking computation-
ally demanding downstream applications like model predictive
control (MPC) [2], reinforcement learning (RL) [3], and
generating synthetic and inexpensive training data for modern
data-hungry foundation models. These simulation applications
are at the forefront of research attempting to enable reliable
and real-time loco-manipulation planning and control of high
degree-of-freedom (DoF) robot systems in potentially contact-
rich scenarios. To effectively drive loco-manipulation research,
the underlying constrained dynamics algorithm (CDA) used
for simulation must efficiently and reliably address a broad
class of motion constraints arising from contacts and kinematic
loops while being robust to singular cases occurring at kine-
matic singularities or when constraints are linearly dependent.

Internal loops, i.e., a loop of kinematic links formed by
motion constraints that does not consist of the ground link,
is a particularly challenging class of constraints to simulate
efficiently for existing CDAs. These class of constraints are
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(a) Several internal closed loops
formed due to contact between the
hand and the cube.

(b) Humanoid platforms consist-
ing of internal loops in addition
to the loop formed due to collab-
orative manipulation.

Fig. 1: Examples of closed-loops interactions or mechanisms
classically encountered in robotics.

increasingly gaining critical importance with recent humanoid
robots design consisting of kinematic loops due to improved
mechanical properties. Even robots without inherent kinematic
loops can form internal loops during operation, e.g., a robot
hand grasping a cube in Fig. 1a or two humanoids in Fig. 1b
jointly transporting a heavy object. Submechanisms like gears
and belt-transmissions are also known to result in internal
loops, which needs to be accounted for simulation accuracy.

Despite the evident importance of internal loops, perhaps
due to the challenge of simulating them efficiently, only a
few existing simulators, such as BULLET [4], MUJOCO [5] or
SIMPLE [6], support them. Even these select few simulators
leverage the computationally expensive Featherstone’s LTL
algorithm [7], [8], [1], which has a computational complexity
of O(nd2 + m2d + md2 + m3), where n, d and m are the
robot DoFs, kinematic spanning tree depth and the constraint
dimensionality. The LTL algorithm does not exploit as much
problem structure as possible. In contrast to the internal loop
case, kinematic trees with external loops (e.g., contact with the
ground) are well-addressed by recursive structure-exploiting
CDAs such as the PV algorithm [9], [10] with O(n+m2d+
m3) complexity and recent O(n+m) complexity algorithms
such as PV-soft, PV-early [11] and constrainedABA [12], all
of which are made available in the form of an efficient C++
implementation within the widely used PINOCCHIO library.
However, there exists pioneering work in recursive algorithms
that exploit structure even for the internal loop case [13], [14],
where the authors have independently proposed a practically
identical algorithm, which we will call BBO (Brandl, Bae,
and others) after the first authors of the two papers. These
works are fairly involved in deriving and implementing and
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are also sensitive to singular cases. Perhaps, they remain
widely unused or benchmarked against the prevalent higher-
complexity algorithms due to these reasons.

Addressing the key need for efficient and reliable CDA
for internal loops arising from robot design and contact
interactions, this paper proposes two efficient recursive
constrained dynamics algorithms, namely loop-constrained
articulated body algorithm (LCABA) and proximal BBO
(proxBBO). These algorithms are derived using Dynamic
Programming (DP) [15] applied to the quadratic program
(QP) [16] associated with the Gauss’ principle of least
constraint (GPLC) [17], [18], [19] similarly to [11], [12].
However, the existence of internal loops leads to a graph
structure, which requires the usage of non-serial DP [20, Chap.
10], [21], [22], and resulting in a variable elimination (also
known as bucket elimination) approach. This methodology
has been highly effective in the closely associated problem of
exact inference in probabilistic graphical models [23].

Article contributions. Our contributions are listed as follows:
1) LCABA: LCABA, a recursive efficient algorithm that

can handle singular cases and internal loops with a best-
case complexity of O(n + m), is derived by applying
non-serial dynamic programming on GPLC problem.

2) ProxBBO: The BBO algorithm [13], [14] is generalized
to handle singular cases using a proximal dynamics
formulation to obtain the proxBBO algorithm. The prox-
BBO algorithm is derived similarly to LCABA, but with
a different variable elimination order, and also has a
best-case complexity of O(n+m).

3) Open-source and efficient implementations, detailed
benchmarking and analysis: Both the algorithms have
been implemented in C++, leveraging the open-source
library PINOCCHIO [24], and will be made publicly
available after the review process. These algorithms
are extensively benchmarked with the prevalent non-
recursive LTL algorithm for different robot topologies.

Article organization. Section II reviews existing literature to
situate our contributions, followed by Section III introducing
the notation and necessary prior knowledge. The LCABA
algorithm is derived, analyzed, and presented in an algorith-
mic form in Section IV, with an analogous treatment for
the proxBBO algorithm in Section V. Section VI presents
implementation details and benchmarking results, followed by
a discussion in Section VII. Finally, Section VIII concludes
the paper and outlines future work.

II. RELATED WORK

Constrained dynamics algorithms can be broadly classi-
fied based on whether they are recursive algorithms or op-
erate on the joint-space formulation (also called general-
ized/minimal/reduced coordinates). All the CDAs considered
in this paper leverage a spanning tree of the underlying
kinematic graph representing the mechanism, where links
correspond to nodes, and joints are associated with the edges.
The joints associated with the edges absent in the spanning

tree are termed cut joints and are imposed as loop-closure
motion constraints.

CDAs can be further classified based on whether these
motion constraints are formulated implicitly or explicitly [1,
Eq.3.11]. Implicit formulation imposes constraints implicitly
through additional constraint equations that are solved simulta-
neously with the equations of motion. In the explicit constraint
formulation, a set of independent coordinates parametrizing
the mechanism’s constrained motion are computed, and the
mechanism’s equations of motion are projected onto these
independent coordinates and solved. For the sake of complete-
ness, we note a non-spanning tree approach inspired by [25],
that constructs a large and sparse linear system consisting
of each link’s Newton-Euler equations and joint constraint
equations, which is then solved using a general-purpose sparse
linear solver. This approach is typically not computationally
competitive against the spanning-tree-based algorithms [1].
Yet, due to its simplicity, it may be preferred when reduced
engineering effort is important compared to computational
efficiency, such as in the DoJo simulator [26].

In the remainder of this section, we begin by reviewing
existing algorithms, first for the unconstrained kinematic tree
case and then for the CDAs associated with the explicit and
implicit constraint formulations.

Unconstrained kinematic trees. Even for the unconstrained
kinematic trees, dynamics algorithms can be joint-space-based
or recursive. The joint-space approach corresponds to comput-
ing the joint-space inertia matrix (JSIM) (typically using the
efficient composite rigid body algorithm (CRBA) [27]), and
factorizing the JSIM efficiently using the LTL algorithm [7]
that exploits branching-induced sparsity in JSIM to reduce the
factorization cost from O(n3) operations to O(nd2) opera-
tions. In contrast, the recursive algorithm for the unconstrained
case corresponds to the articulated body algorithm (ABA) [28],
[29], [30], which has a linear computational complexity of
O(n), and scales better to high DoF systems like legged robots
compared to the cubic complexity joint-space approach.

Implicit constraint approach. The implicit approach solves
the primal-dual system of dynamics equations and constraint
equations. External loops, arising commonly out of robot-
ground contacts, constitute a special class of implicit con-
straints that can be solved straightforwardly by cutting the
loop at the ground link to preserve a tree structure. The
joint-space LTL algorithm was extended in [8] to account for
external loops by exploiting the branching-induced sparsity
to compute a computationally expensive intermediate quantity
known as the Delassus matrix [31], [32] (also named inverse
operational space inertia matrix (OSIM) in the robotics com-
munity [33]). This results in a O(nd2 + m2d + md2 + m3)
complexity algorithm. [34] introduces an extension of the
LTL factorization proposed in [7] to exploit branching-induced
sparsity in the Karush–Kuhn–Tucker matrix associated with
the constrained dynamics problem, reducing the factorization
cost from O((n + m)3) to O((n + m)(d + m)2) opera-
tions. Additionally, the authors of [34] suggest leveraging the
proximal methods of multipliers [35] to cope with singular
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cases accurately. Among recursive algorithms for the implicit
external loops constraints, the PV algorithm [9], [10] is a
pioneering contribution with a O(n+m2d+m3) computational
complexity. The PV algorithm was recently revisited in [11],
which provides a DP-based derivation for the PV algorithm
by solving an equivalent discrete-time linear quadratic regula-
tor [2] problem. [11] further proposed two original algorithms,
PV-soft and PV-early, by relaxing motion constraints with
quadratic penalties and through early elimination of constraint
forces, respectively, both of which have a computational
complexity of O(n + m). However, PV-soft violates motion
constraints, while PV-early is significantly challenging to
implement, especially for singular cases (e.g., when there are
redundant constraints). Finally, [12] applied the augmented
Lagrangian method (ALM) [36], [37] on the proximal con-
strained dynamics formulation [34] to derive a particularly
simple iterative algorithm constrainedABA, that retains the
optimal O(n + m) complexity of PV-early algorithm, while
reliably handling singular cases and being significantly simpler
to implement.

For both the joint-space methods and the recursive algo-
rithms, the internal loop case is more challenging to imple-
ment and represents a significant increase in computational
cost. [1, Chap.8] provides a detailed discussion on exploiting
branching-induced sparsity for kinematics quantities associ-
ated with loop joints. Among joint-space methods, the LTL
algorithm was extended to internal loops in [34] and general-
ized to singular cases using proximal algorithms [38]. We will
refer to it as the proxLTL algorithm. The proxLTL algorithm
has been implemented particularly efficiently in C++ in the
PINOCCHIO library [24]. The LTL and proxLTL algorithms
retain the O(nd2 + m2d + md2 + m3) complexity for the
internal loop case. Recursive algorithms for the internal loop
case were pioneered by the BBO algorithm [13] and [14] by
independently rediscovering the PV algorithm and extending it
to internal loops, resulting in a worst-case O(n+m2d+m3)
complexity algorithm. Both these works also pioneered the
early elimination of internal loop constraints, resulting in a
best-case computational complexity of O(n + m) for local
loops. The worst-case complexity manifests only when all the
loops are coupled with each other (e.g., external loops).

Despite its low computational complexity, the BBO algo-
rithm has not been adopted in existing simulators, perhaps
due to its complexity, sensitivity to singular cases, absence
of open-source implementations, and lack of benchmarking.
Considering the demonstrated computational speed-ups pro-
vided by the recursive algorithms [11], [12] for external loops,
there exists an unexplored opportunity to exploit recursive
algorithms for internal loops, with the need for making them
robust to singular cases, which is addressed by this article.

Explicit constraint approach. The explicit constraint for-
mulation directly parametrizes the effective DoFs of the
constrained system using independent coordinates, which are
generally obtained by computing the nullspace of the implicit
constraint formulation which scales cubically. The worst-case
for this approach manifests for mechanisms with a large loop
consisting of ∝ n links. Once the explicit constraint formula-

tion is obtained, the problem can be solved using either the
joint-space or recursive approaches. For the explicit constraint
approach, the external and internal loops are identical in
computational cost and implementation difficulty. In the joint-
space approach, the JSIM and the joint torques are projected
onto the independent coordinates and solved, which typically
corresponds to O(n2nm + nn2

m + n3
m) operations, where

nm is the mobility of the constrained system. Local loops,
e.g., due to a four-bar linkage, permit an efficient recursive
approach through linear constraint embedding (LCE) [39],
[40]. LCE aggregates the links constituting a coupled loop
with the corresponding generalization of rigid-body quantities
such as spatial inertia, motion, and force vectors. This aggre-
gation transforms a mechanism’s graph into a tree topology
consisting of the aggregated links, to which the articulated-
body algorithm is straightforwardly adapted to, resulting in
a recursive algorithm. When all loops are local, LCE-ABA
has a best-case computational complexity of O(n+m). It is
particularly well-suited to handle local loops resulting from
submechanisms such as gears, where the explicit constraint
formulation is readily available and the loops are local. This
algorithm has recently been implemented and open-sourced
in [41]. The explicit approach has limited generality, as it
becomes inefficient for large loops or coupled loops, which can
occur frequently, e.g., for external loops when a robot makes
multi-point contact with the ground. They are, moreover,
sensitive to singular cases that can occur when loop-closure
constraints become linearly dependent.

III. PRELIMINARIES

This section introduces the notation used in the paper, the
connectivity graph representation of a mechanism, and the
Gauss’ principle of least constraint. We also review the two
equivalent QP solver approaches, the augmented Lagrangian
method (ALM) and the dual proximal point algorithm (PPA),
that will be used to derive constrainedABA and the proxBBO
algorithms respectively. This is followed by a brief introduc-
tion to non-serial DP and joint-space CDAs.

A. Notation

Lower-case symbols (x), bold-faced lower-case symbols
(x), and upper-case symbols (X) represent scalars, vectors,
and matrices, respectively. C(.) operator returns the cardinality
of a given set. The operator := defines the left side symbol
with the right side expression. The operators ←, +← and −←
assigns, increments or decrements respectively the left side
variable with the right side expression. The set of symmetric
positive definite and symmetric positive semi-definite matrices
of size m×m are denoted as Sm++ and Sm+ respectively. Any
variable x overset with a bar and a indexed with a set Y as
x̄Y concatenates all the xi, ∀i ∈ Y . Any list X is reversed
and denoted by Xr.

Let q ∈ Q, ν ∈ TqQ ≃ Rn and ν̇ be the robot gen-
eralized configuration, generalized velocity, and generalized
accelerations respectively, where Q and TqQ are the robot’s
configuration space and Q’s tangent space at q respectively.
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TABLE I: List of symbols and notations used in the article.

Symbol Meaning
n Number of robot degrees of freedom.
m Number of motion constraints (excluding spanning-tree joints).
d Depth of the kinematic tree.
C(·) Returns cardinality of a set.
q Robot configuration.
Q Robot configuration space.
ν Generalized robot velocities.
TqQ Tangent space of Q at q.
ν̇ Generalized robot accelerations.
τ Generalized robot forces.
T ∗
q Q Dual tangent space of Q at q.

vi ith link’s 6D spatial velocity.
M6 Motion vector space in spatial algebra.
ai ith link’s 6D spatial acceleration.
fi 6D spatial forces acting on the ith link.
F6 Force vector space, dual of M6.
Hi ith link’s 6D spatial inertia tensor.
× Cross-product operator on spatial motion vectors.
×∗ Cross-product operator on spatial force vectors.
π(i) ith link’s parent link.
nb Number of links in the mechanism.
mb Number of cut-joints in the mechanism.
E Set of all cut-joint indices.
lji Index of the jth link in the ith cut-joint.
γ(i) Set of ith link’s children link indices.
S Topologically ordered list of tree link indices.
Sr List S reversed.
SL(i) Set of indices of supporting links of the ith loop.
LS(i) Set of indices of loops supported by the ith link.
ri ith loop’s root link index.
Ri Set indexing loops rooted at the ith link.
Si Spans ith joint’s motion subspace.
Kj

i Constraint matrix of the ith link for the jth loop.
ki Desired constraint accelerations of the ith constraint.
ab,i ith link’s bias acceleration vector.
M Joint-space inertia matrix (JSIM).
ν̇free Unconstrained spanning-tree generalized acceleration.
ac Desired constraint accelerations.
Jfc Geometric Jacobian of fc.
λ Lagrange multipliers and constraint force magnitudes.
µ Proximal operator / ALM parameter.
Λµ Damped Delassus inverse matrix.
Mµ Constraint augmented Inertia matrix.
Hi,j Inertia matrix coupling the ith and jth links in LCABA.
Ni Set of link indices neighboring the ith link in LCABA and

LS(i) in proxBBO.
Di Apparent constrained inertia felt at the ith joint.
Pi Backward force propagation matrix at the ith joint.
SE List of link indices in the LCABA elimination order.
Ui Hi,iSi.
mc Maximum number of neighbors for any link in LCABA.
Ki,j Constraint matrix felt at the ith link due to the jth loop.
Li,j Constraint coupling matrix for the ith and jth cut-joint

constraints.
Ui LS(i) - Ri.
mb Maximum number loops supported by any link.

Let τ ∈ T ∗
qQ ≃ Rn be the generalized forces exerted on

the robot. We use Featherstone’s spatial algebra [1] for rigid
body quantities. The 6D spatial velocity and acceleration of a
rigid body indexed by i is vi ∈M6 and, ai ∈M6 respectively,
where M6 is the spatial motion vector space. The spatial forces
acting on the ith body is fi ∈ F6, where F6 is the spatial force
vector space that is dual to M6. The spatial inertia of the ith

link is Hi ∈ I6×6 ≃ S6++ and maps M6 to F6. × and ×∗ are
the cross-product operators on the spatial motion and force
vectors. Refer [1] for more details on the spatial algebra.

B. Kinematic graph

Let a mechanism with nb links be modeled via a connec-
tivity graph as seen in Fig. 2a for an illustrative mechanism,
where the mechanism’s links are nodes and joints are edges
and the ground is the 0th link, also called the root link. For
floating-base mechanisms, such as legged robots, the floating-
base link is connected to the root through a ‘free-flying
joint’ that permits relative motion freely between the root and
the floating-base. A tree is a special type of graph that is
acyclic, i.e., there is a unique path between any two nodes.
A subgraph of a graph consists of a subset of the original
graph’s links and joints. A spanning tree is a subgraph that
is a tree and consists of all the nodes of the original graph.
The original graph’s edges absent in the spanning tree are
termed cut edges or cut joints. For a given joint indexed i
in the spanning tree connecting two links, the link closer
to the root and the other link are termed the joint’s parent
link and child link, respectively, and numbered π(i) and i
respectively. All the non-root links and joints are numbered
topologically from 1 to nb, such that π(i) < i, and the cut-
joints are numbered from nb + 1 to nb + mb. Let the lists
S = {1, 2, . . . , nb} and E = {nb + 1, nb + 2, . . . , nb + mb}
index the non-root links/joints and cut-joints respectively. Let
l1i and l2i index the two links connected by cut-joint i. Let
the set γ(i) = {j ∈ S |π(j) = i} consist of the ith link’s
children links. For the illustrative graph in Fig. 2a, Fig. 2b
shows a spanning tree that is appropriately numbered, where
spanning tree joints are shown as directed edges from parents
to children links, and cut-joints are shown as dashed edges.

0

(a) Kinematic graph for an illus-
trative mechanism.
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(b) Spanning tree for the graph
in Fig. 2a.

A spanning tree defines mb number of fundamental loops in
the graph, where each fundamental loop, indexed i, is the loop
created when a cut-joint i is added to the spanning tree. From
now on, we will refer to each fundamental loop simply as a
loop. Let the set SL(i) (supporting links) contain indices of
links supporting loop i, which means that these links constitute
the loop i. Similarly, let the set LS(i) (loops supported) contain
indices of loops that link i supports. A loop i’s root, defined
as ri = min(SL(i)), is the link with the smallest index in the
loop. Let the set Ri denote the set of loops for which link i is
the loop root. Two loops i and j are considered to be coupled
if they contain at least one joint in common.
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C. Gauss’ principle of least constraint

We now recall the Gauss’ principle of least constraint
(GPLC) [17], [19], an optimization-based mechanics formula-
tion, which states that a constrained rigid body’s acceleration
under forces is the minimizer of the following strongly convex
quadratic program (QP) [9], [11]:

minimize
ν̇,a

nb∑
i=1

{
1

2
aTi Hiai − fTi ai − τT

i ν̇i

}
(1a)

subject to ai = aπ(i) + Siν̇i + ab,i, i ∈ S, (1b)

K1
i al1i +K2

i al2i = ki, i = E , (1c)

a0 = −agrav, (1d)

where fi is the resultant spatial force on link i due to external
forces and the bias forces (−vi×∗Hivi), νi ∈ Rni , τ i ∈ Rni

and ν̇i ∈ Rni are the ith joint’s generalized velocities,
generalized accelerations and the joint torques respectively,
where ni is the ith joint’s DoFs. The acceleration recurrence
equation in Eq. (1b) explicitly formulates the spanning tree
joint constraints. The column vectors of the matrix Si ∈ R6×ni

span the ith joint’s motion subspace. The ith link’s bias
acceleration is ab,i := Ṡiνi, which, due to the joint axis being
commonly fixed w.r.t the parent link, is

ab,i = vi × Siνi.

The cut-joint motion constraints are implicitly formulated
in Eq. (1c), where K1

i ∈ Rmi×6 and K2
i ∈ Rmi×6 are

the constraint matrices on the links indexed l1i and l2i re-
spectively, whose relative motion is constrained by the ith

cut-joint, ki ∈ Rmi is desired constraint accelerations, where
mi = 6− ni is the constraint dimension. Each row vector of
K1

i (or K2
i ) is an element in F6. A uniform acceleration field

of minus acceleration-due-to-gravity is added by fixing the
root node acceleration in Eq. (1d). This strategy [30] spares
us from adding each link’s weight to fi, thereby providing
some computational speed up.

Joint-space GPLC formulation results in the following QP
problem:

minimize
ν̇

1

2
∥ν̇ − ν̇free(q, ν̇, τ )∥2M(q) (2a)

subject to Jfc(q)ν̇ = ac(q,ν), (2b)

where M(q) ∈ S++, ν̇free, Jfc ∈ Rm×n and ac ∈ Rm are
the joint-space inertia matrix (JSIM), unconstrained spanning-
tree joint accelerations in absence of cut-joint constraints,
constraint Jacobian and desired constraint accelerations re-
spectively. The terms Jfc and ac are typically computed
from Eq. (1c) by substituting ai with the corresponding
kinematic Jacobian equations

ai = Jiν̇ + J̇iν. (3)

D. QP solver approaches

For solving a strongly convex QP of the form

minimize
x

1

2
xTQx+ qTx (4a)

subject to Ax = b, (4b)

where Q ∈ Sn++, we now review the two effective and equiv-
alent approaches behind LCABA and proxBBO, namely the
augmented Lagrangian method (ALM) [37], [36], [16] and the
dual proximal point algorithm (PPA) [38], [35] respectively.
These approaches do not assume constraint linear indepen-
dence (A need not have full row-rank), and are particularly
efficient by being able to leverage the Cholesky decomposi-
tion [42], which is a fast linear solver. Alternate strategies
to address redundant constraints like Tikhonov regularization
or the truncated singular value decomposition (SVD) [42]
undesirably bias the optimal x towards the origin or incur
a high computational cost, respectively.

The QP’s Lagrangian function [43] is defined as

L(x,λx) :=
1

2
xTQx+ qTx+ λT

x (Ax− b) , (5)

where λx are the QP’s dual variables.

Augmented Lagrangian method augments the Lagrangian
function with a quadratic penalty on the constraint violation
to define the augmented Lagrangian function (ALF)

LA(x,λx) := L(x,λx) +
µ

2
∥Ax− b∥2, (6)

and alternately minimizes and maximizes the ALF w.r.t the
primal and dual variables in an iterative fashion:

xk+1 =
(
Q+

µ

2
ATA

)−1 (
−q−ATλk

x + µATb
)
, (7a)

λk+1
x =λk

x + µ
(
Axk+1 − b

)
, (7b)

till a specified termination criterion is met.

Dual proximal point algorithm. The QP’s dual function is

g(λx) := min
x
L(x,λx), (8)

where minimizing L w.r.t x is always possible since Q is
positive definite, yielding

g(λx) = −
1

2
λT
x

(
AQ−1AT

)
λx −

(
AQ−1q+ b

)T
λx. (9)

Note that the dual Hessian AQ−1AT ∈ Sm+ makes the dual
function concave, but not necessarily strongly concave since
A need not have full row-rank. The QP can be solved by
maximizing the dual function (note that optimal x∗ can be
recovered from optimal λ∗ using Eq. (7a)).

The proximal operator for a convex function f : Rn → R
is defined as

proxµ,f (x
k) := arg min

x

{
f(x) +

1

2µ
∥x− xk∥2

}
, (10)

where µ ∈ (0,∞). The proximal point algorithm (PPA)
performs fixed-point iterations on the proximal operator

xk+1 := proxµ,f (x
k), (11)

until a termination criterion is met. The dual function g(x) is
maximized by minimizing −g(x) using PPA

λk+1
x := proxµ,−g(λ

k
x).

The shifted regularization term added in Eq. (10) makes
each inner problem solved by the proximal operator strongly
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convex, even if the dual function is not strongly concave.
Proximal algorithms [38] has been found to be particularly
effective in robotics [44], most often requiring few iterations
(each of which is efficient) to converge for robot dynamics
problems [34], [12], [6].

E. Joint-space algorithms

The joint-space GLPC problem formulation in Eq. (2) can
also be solved using dual PPA or the ALM, resulting in the
proxLTL [34] and proxLTLs algorithms, respectively. These
two algorithms are the joint-space counterparts of proxBBO
and LCABA, respectively, and will be reviewed in this section.

ProxLTL algorithm: The first iteration of dual PPA is equiv-
alent to solving the following KKT system [34]− 1

µ
Im×m Jfc

JT
fc M

[
λ1

ν̇1

]
=

ac −
1

µ
λ0

M ν̇free

 , (12)

where both M and Jfc have the spanning-tree-induced sparsity
pattern [7],[1, Sec.8.9]. This sparsity was exploited in [34] to
efficiently factorize the KKT system above using the UDUT

Cholesky decomposition (reverse of the typical LDLT order-
ing). This approach turns out to compute the dual function
as an intermediate quantity and the upper left-block of the U
matrix corresponds to the Cholesky factor of the damped De-

lassus matrix
(
Λµ := JT

fcM
−1JT

fc +
1

µ
Im×m

)
. The Cholesky

factor is reused to efficiently compute the subsequent dual PPA
iterations

Λµλ
k+1 = Jfc ν̇free − ac +

1

µ
λk. (13)

ProxLTLs algorithm: Applying ALM on the joint-space
GLPC problem yields the following updated equations

ν̇k+1 = M−1
µ

(
ν̇free + JT

fc

[
µac − λk

])
, (14a)

λk+1 = λk + µ (Jfc ν̇ − ac) , (14b)

where
Mµ = M + JT

fc (µIm×m) Jfc ∈ Sn++. (15)

The proxLTLs was mentioned in [34], but not implemented,
while it has been firstly considered in [12] for the restricted
case of kinematic trees with external loops. In this restricted
case, Mµ’s sparsity pattern is identical to that of M . However,
this property no longer holds for mechanisms with internal
loops, where Mµ contains a dense block corresponding to all
the joints comprising a loop. To see why, consider a row of the
Jfc matrix corresponding to a cut-joint. All the columns of this
row corresponding to the joints in the loop will be non-zero in
general, and a µ-weighted outer product of this row with itself
yields a dense block in Mµ. This loss of sparsity significantly
complicates the implementation of proxLTLs and also reduces
its computational efficiency, therefore this algorithm is not
considered in detail in this paper. That said, proxLTLs can
be a promising relative to proxLTL for the uncommon case of
heavily constrained mechanisms where m ∼ n.

a b c d e

(a) Visualizing the structure of the
objective function minimized by
non-serial DP.

c d e

(b) The graph structure after opti-
mizing over nodes a and b.

F. Non-serial Dynamic Programming

Non-serial DP [20, Chap. 10], [21], [22] is a straightforward
generalization of the traditional serial DP [15] to non-chain
graphs. Suppose that the function to be optimized is given by

f(a, b, c, d, e) = p(a, d) + q(b, c) + r(b, e) + s(d, e),

whose structure can be visualized in Fig. 3a, with the variables
depicted as nodes and the functions depicted as edges, each
connecting the nodes the corresponding function depends on.
A function depending on multiple variables is depicted by a
clique involving the corresponding nodes and vice versa. DP
optimizes over variables to compute the optimal ‘cost-to-go’
functions depending on the remaining variables and repeats
this successively for all the unknown variables. computing the
respective optimal functions.

Let N (g) denote the set of all the nodes that neighbor the
node g in the graph, and let f̂(g,N (g)) denote the sum of all
the functions that depend on node g, and let f̃(N (g)) denote
the sum of all the functions depending on variables in N (g)
and not on g. Optimizing over the variable g gives the function

f̂∗(N (g)) = min
g

{
f̂(g,N (g))

}
, (16)

which, in general, depends on all elements in N (g) and is
thereby represented graphically as a clique comprising the
nodes in N (g).The graph’s connectivity structure is modified
to add edges between any two links in N (g) if they were not
already connected. Then the function f̃(N (g)) is updated with
the terms obtained from optimizing over g as follows

f̃(N (g))
+← f̂∗(N (g)). (17)

This step is repeated until all the variables are eliminated.
As an illustrative example, suppose that DP optimizes

over variables in the order a, b, c, d, e for the case depicted
in Fig. 3a. After eliminating a, we get

f̃(d)← s(d, e) +min
a

p(a, d), (18)

where the connectivity structure of the graph does not change
since a has only one neighbor. At the next step, minimizing
over b results in the following update:

f̃(c, e) = t(c, e) + u(d, e) +min
b
{r(b, c) + s(b, e)} , (19)

resulting in a new edge being added between the nodes c and e.
This new graph connectivity is plotted in Fig. 3b. Similarly, the
function is optimized over d and e to get a constant function,
which is the optimum.

DP is in general intractable due to curse-of-dimensionality,
which is an even greater problem for non-serial DP, where the
cost of representing and optimizing the cost-to-go function
at any step is exponential in the number of neighbors of the
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variable being optimized over. However, similarly to how the
LQR problem is a tractable special case for the serial DP
problem, we will find the mechanics problem of solving GPLC
over graphs also to be a tractable problem since the cost at
every stage can be parameterized efficiently as a quadratic
form. Finally, it is worth noting that the traditional serial DP
is a special case of the non-serial DP algorithm, where each
leaf node of the graph has only one neighbor, due to which
eliminating that variable does not modify the graph structure.

IV. LOOP-CONSTRAINEDABA
This section derives the LCABA algorithm, presents it in an

algorithmic form, and analyzes its computational complexity.
The list of symbols used all over this section is summarized
in Tab. I.

A. LCABA derivation

The derivation applies the ALM on the GPLC prob-
lem from Eq. (1) and solves each inner primal problem
(see Eq. (7a)) using DP. We will follow the notation and style
of [11] for this DP-based derivation.

The ALF associated with GPLC (1) is given by:

LA(ν̇,a,λ) =
∑
i∈S

{
1

2
aTi Hiai − fTi ai − τT

i ν̇i

}
+

∑
i∈E

{
λT
i

(
K1

i al1i +K2
i al2i − ki

)
+

µ

2
∥K1

i al1i +K2
i al2i − ki∥2

}
, (20)

where the spanning tree joint constraints (see Eq. (1b)) are
excluded because these constraints will be eliminated by
substitution similarly to single-shooting transcription [2] in
optimal control.

The ALM’s inner primal problem is defined by:

ν̇k+1,ak+1 = argmin
ν̇,a

LA(ν̇,a,λk). (21)

Rearranging the constraint terms due to the ith cut-joint in LA

yields the following quadratic form

1

2

[
al2i
al1i

]T [
µK2T

i K2
i µK2T

i K1
i

µK1T
i K2

i µK1T
i K1

i

] [
al2i
al1i

]
− (22)K2T

i

(
µki − λk

i

)
K1T

i

(
µki − λk

i

)T [
al2i
al1i

]
The quadratic form’s off-diagonal blocks reveal an inertial
coupling term µK1T

i K2
i between links that are connected due

to a cut-joint. To account for such inertial coupling during DP,
we hypothesize the following quadratic form for the optimal
cost-to-go function for the DP sub-problem at a spanning tree
leaf link indexed i

V ∗
i (ai, āNi

) :=
1

2

[
ai
āNi

]T [
Hi,i H̄T

i,Ni

H̄i,Ni H̄Ni,Ni

] [
ai
āNi

]
(23)

−
[
fi
f̄Ni

]T [
ai
āNi

]
,

where Ni is the set of ith link’s ‘neighbouring’ link indices.
The terms āNi , H̄i,Ni , H̄Ni,Ni and f̄Ni concatenate the Ni

links’ acceleration, coupled inertia and forces as follows. For
all j, k ∈ Ni

āNi
=

[
. . . aTj . . .

]T
, f̄Ni =

[
. . . fTj . . .

]T
(24)

H̄i,Ni
=


...

Hj,i

...

 , H̄Ni,Ni
=


Hk,k . . . Hk,j . . .

...
. . .

...
. . .

HT
k,j . . . Hj,j . . .
...

. . .
...

. . .

 .

The quadratic form coefficients above are initialized by
iterating over cut-joint constraints. For a cut-joint j, the
quadratic form updates to the corresponding links areHl1j ,l

1
j

Hl2j ,l
2
j

Hl1j ,l
2
j

 +← µ

K1T
j K1

j

K2T
j K2

j

K1T
j K2

j

, [fl1j
fl2j

]
+←

K1T
j

(
µkj − λk

j

)
K2T

j

(
µkj − λk

j

). (25)

The DP’s elimination process starts by selecting a leaf link
indexed i in the spanning tree and eliminating its acceleration
ai and joint acceleration ν̇i. Apart from its cut-joint neighbor
set Ni, the ith link is also connected to its parent link indexed
π(i) through the acceleration recurrence relation. Therefore,
the functions and constraints depending on the ith link may
additionally depend on only the links in {π(i)} ∪ Ni. After
eliminating the link i, the DP cost function involving these
connected links is given by the DP recurrence relation as

V ∗ (aπ(i), āNi

)
← 1

2
aTπ(i)Hπ(i),π(i)aπ(i) − fTπ(i)aπ(i)+

min
ν̇i,ai

{
V ∗
i (ai, āNi)− τT

i ν̇i

}
. (26)

Substituting for ai above using the acceleration recurrence
relation from Eq. (1b) transforms the minimization above to

min
ν̇i

{
V ∗
i

(
aπ(i) + Siν̇i + ab,i, āNi

)
− τT

i ν̇i

}
. (27)

Expanding the expression V ∗
i above using the hypothesized

cost-to-go parametrization from Eq. (23), and collecting the
terms containing ν̇i yields an unconstrained QP

minimize
ν̇i

1

2
ν̇T
i Diν̇i −

[
τ i + ST

i

(
fi − H̄T

i,Ni
aNi−

Hi,i

(
aπ(i) + ab,i

))]T
ν̇i, (28)

where Di :=
(
ST
i Hi,iSi

)
is the ith link’s inertia projected

onto the ith joint’s subspace, and Di ∈ Sni
++ [14]. Solving the

QP above yields the following optimal joint accelerations

ν̇∗
i = D−1

i

[
τ i + ST

i

(
fi − H̄T

i,Ni
āNi −Hi,i

(
aπ(i) + ab,i

))]
.

(29)

Substituting the expression ν̇∗
i back in Eq. (26) results in
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following updates

Hπ(i),π(i)
+← PiHi,i; (30a)

fπ(i)
+← Pi (fi −Hi,iab,i)−Hi,iSiD

−1
i τ i; (30b)

H̄π(i),Ni

+←H̄i,Ni
PT
i ; (30c)

H̄Ni,Ni

−←H̄i,Ni
SiD

−1
i ST

i H̄
T
i,Ni

; (30d)

f̄Ni

+← H̄i,Ni

[
Piab,i + SiD

−1
i

(
τ i + ST

i fi
)]
, (30e)

where
Pi = I6×6 −Hi,iSiD

−1
i ST

i .

After eliminating the ith link, it must be removed from the
neighbor list Nj , ∀j ∈ Ni

Nj ← Nj − {i}, for j ∈ Ni, (31)

and note from Eq. (30c) and Eq. (30d) that eliminating
link i introduces mutual coupling between all the links in
Ni ∪ {π(i)}, due to which the neighbor list of these links
are updated as follows

Nj ← Nj∪((Ni ∪ {π(i)})− {j}) , for j ∈ Ni∪{π(i)}, (32)

and any undefined Hj,k term for ∀ j, k ∈ Ni ∪ {π(i)} is set
to 06×6 before executing Eq. (30c) and Eq. (30d).

Subsequently, the next leaf link in the spanning tree is
selected and eliminated, and this process is repeated until all
the links in the tree are eliminated. Note that any link k that
was not originally a leaf link becomes a leaf link itself, once
all its child links γ(k) are eliminated. The kth link’s neighbors
Nk at this DP stage will have been recursively computed
using Eq. (31) and Eq. (32), whenever any neighbor or child of
link k is eliminated. Furthermore, the function V ∗

k (ak, āNk
) is

obtained as a quadratic form hypothesized in Eq. (23) using the
recursive formulae in Eqs. 30. Therefore, it can be inductively
shown that the DP hypothesis in Eq. (23) is valid throughout
the elimination process.

Once all the links are eliminated, the optimal joint accel-
erations are calculated using Eq. (29) by reversing the elim-
ination order. This solves the ALM’s inner primal problem.
Subsequently, the ALM’s dual variable updates (see Eq. (7b))
are straightforwardly performed using the constraint violations

λk+1
i = λk

i + µ
(
K1

i a
k+1
l1i

+K2
i a

k+1
l2i
− ki

)
. (33)

When π(i) ∈ Ni, a special case occurs that must be ad-
dressed. The recursive formula in Eq. (30c) evaluates an
off-diagonal block H̄π(i),Ni

of the quadratic form assumed
in Eq. (23). Because the quadratic form’s Hessian is symmet-
ric, each off-diagonal block has a symmetric counterpart. But
if π(i) ∈ Ni, the symmetric counterpart term also needs to be
added to the single Hπ(i),π(i) block as follows

Hπ(i),π(i) ← Hπ(i),π(i) +
(
Hi,π(i)P

T
i

)T
. (34)

Subsequent primal iterations are efficient. The inner prob-
lem of the subsequent ALM iterations needs to only recompute
the force terms f that change due to the updated Lagrange
multipliers. The inertia terms H do not change and can
be reused. Therefore, a reduced recursion that avoids the

expensive matrix-matrix operations in Eq. (25) and Eq. (30)
is devised that only performs the required cheaper matrix-
vector operations for the force and acceleration terms us-
ing Eq. (25), Eq. (29), and Eq. (30). This reduced sweep is
akin to re-using a factorized linear system for linear solves,
making subsequent ALM iterations efficient. The reduced
computations will be detailed later in this section.

Elimination ordering. A spanning tree can have multiple
leaf links, any of which can be chosen for elimination at
a DP step, yielding multiple valid elimination orders. This
yields multiple elimination orders with potentially different
computational costs. The cost of eliminating a link increases
quadratically with the link’s neighbor count, and link elim-
ination introduces coupling between neighbors and parent
links. A poor elimination ordering choice can result in costly
coupling among numerous links. Finding an optimal elimina-
tion order for the variable elimination, in general, has been
shown to be an NP-hard problem [45]. However, various
effective greedy heuristics such as minimum degree [46],
nested dissection [47], and Cuthill-Mckee algorithm [48] have
been proposed. LCABA adopts the minimum degree heuristic
for its simplicity, whereby at each DP step, the leaf link with
the lowest neighbor count is selected for elimination, with
ties being broken randomly. Let mc be the highest neighbor
count encountered for an eliminated link during the LCABA
elimination.

Constraints with respect to ground are a special case. The
constraint model in Eq. (1) can also model external contact
constraints that do not lead to internal loops, e.g., the four-
foot-ground contact constraints for a quadruped. Suppose that
the ground link is indexed l1i without loss of generality for
constraint i, since its acceleration a0 = −agrav is a constant
and known in advance, its value is directly substituted, and
a0 not being a decision variable, only the Hl2i ,l

2
i

block and
fl2i needs to be updated in Eq. (25). Accounting for the Hl1i ,l

2
i

coupling term, and the force update needs to be modified as
follows

fl2i
+← K2T

i

(
µki − µK1

i a0 − λk
i

)
. (35)

Since the inertial coupling term is completely absorbed into
the force update, the ground link and the link Nl2i

are
not connected as neighbors, substantially simplifying the DP
algorithm. The remaining LCABA steps continue exactly as
derived previously. If all loops are external, LCABA reduces
exactly to constrainedABA [12]. Therefore, LCABA gener-
alizes constrainedABA, supporting both internal loops and
external loops while retaining constrainedABA’s efficiency for
external loops.

Remark 1. Though the constraint model in Eq. (1) constrains
relative motion between two links, the presented DP-based
algorithms can readily support constraints on multiple links
of the form ∑

j

{
Kj

i alji

}
= ki, (36)

with trivial modification. Only the quadratic form updates
in Eq. (25) need to be modified to compute the coupling among
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Fig. 4: Graphical illustration of LCABA’s elimination steps.

all the links involved in this constraint.

However, LCABA’s efficiency can drop drastically if too many
links are involved in a constraint since the cost of each DP
elimination step increases quadratically with the neighbour
count. Therefore, LCABA is not recommended for constraints
involving all the links (e.g. center-of-mass constraints).

B. Illustration of LCABA

LCABA’s DP elimination is illustrated in Fig. 4 for an
example mechanism shown in Fig. 4a, with eleven links and
two cut-joints connecting the links 6&8 and links 8&11.
Spanning-tree joint constraints are depicted by solid directed
edges and the coupling terms in the DP’s objective arising
due to cut-joints are depicted by dashed red edges. Link 6 is
first eliminated due to the minimum degree heuristic because
it has the fewest neighbors among the leaf-links 6, 8 and 11.
This elimination couples links 5&8, subsequently the new leaf
links 5 and 4 are eliminated, coupling links 3&8 as shown
in Fig. 4b. Then the leaf-links with least neighbors, 11, 10
and 9 are eliminated as seen in Fig. 4c. Note that since the
links 3&8 were already coupled, eliminating link 9 does not
introduce additional coupling and only modifies the existing
coupling between links 3&8. Subsequently, the links 8 and
7 are eliminated as shown in Fig. 4d. Since the remaining
links do not have neighbors, LCABA elimination proceeds
identically to the ABA algorithm. Suppose that link 8 was
eliminated first in Fig. 4a instead of links 6 or 11 which have
fewer neighbors, it would have introduced coupling between
links 6&11 as seen in Fig. 4e. This coupling would have
increased the algorithm’s computational cost since each leaf
link now has two neighbors instead of one. This example
demonstrates the minimum degree heuristic’s benefit.

C. LCABA algorithm

This subsection presents LCABA in an algorithmic form.
Let SE be the order in which spanning-tree links are elimi-
nated. The first ALM iteration is presented in Algorithm 1,
followed by the more efficient reduced-sweep for subsequent
ALM iterations in Algorithm 2, before presenting the whole
LCABA in Algorithm 3. The terms in parentheses, such as
(UiD

−1
i ), are stored in variables to avoid their re-computation.

Since blocks in coupling matrices satisfy Hi,j = HT
j,i, only

Hi,j , for i < j is computed and stored. However, this aspect is
avoided in the algorithm for clarity. Furthermore, to highlight
how LCABA extends constrainedABA, which itself extends
ABA: LCABA, constrainedABA and ABA lines are marked
in violet, brown, and black respectively. In the reduced sweeps
depicted in Algorithm 2, only the delta changes in forces
and accelerations due to constraint force updates in an ALM
iteration need to be computed. The entire LCABA and the
termination criteria are listed in Algorithm 3.

D. LCABA complexity analysis

The worst-case computational complexity of LCABA is now
analyzed, starting with the three-sweep Algorithm 1. The first
forward sweep from line 1 to line 12 requires O(n + m)
operations. In the second forward sweep, line 31 requires
O(C(Ni)) operations and the remaining lines require a fixed
number of operations at each link. This brings the complexity
of the second forward sweep to O(n+mcn), where mc is the
maximum cardinality encountered among all links, denoted by
C(Ni). Similarly to ABA and constrainedABA, the backward
sweep is the most computationally expensive part, where
backpropagating the coupling inertias and coupling forces in
lines 17 and 19 require O(C(Ni)) operations and updating
inertial coupling among all links in Ni in line 18 requires
O(C(Ni)

2) at each link. This brings the total computational
complexity of the three-sweep algorithm to O(n+m+m2

cn).
Note that loops are local and not coupled in many practical
cases, e.g., the four-bar submechanisms of the digit robot.
Even when there is coupling among loops, typically only a
few loops (mc ∼ 3) participate in such coupling, bringing the
effective complexity of LCABA to the best-case complexity
of O(n+m).

V. PROXBBO

This section presents the proxBBO algorithm that gener-
alizes the state-of-the-art recursive algorithm BBO [13], [14]
to the proximal dynamics formulation that addresses singular
constraints.

A. ProxBBO derivation

ProxBBO is derived using the dualPPA discussed in Sec-
tion III-D similarly to LCABA’s derivation. ProxBBO uses DP
to compute the following dual PPA iteration

λk+1 := argmin
λ

{
−
(

min
ν̇
L(ν̇,a,λ)

)
+

1

2µ
∥λ− λk∥2

}
,

(37)
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Algorithm 1 LCABA three-sweep algorithm

Require: q, ν, τ , Sis, His, Kis, kis, f exti , SE , µ, λ0, E
First forward sweep

1: for i in S do
2: vi = vπ(i) + Siνi

3: ab,i = vi × Siνi

4: Hi,i ← Hi; fi ← f exti − vi ×∗ (Hivi)
5: Ni ← {}
6: for j in E do
7: Hl1j ,l

1
j

+← µK1T
j K1

j , Hl2j ,l
2
j

+← µK2T
j K2

j ;
8: if Hl1j ,l

2
j

is undefined then
9: Hl1j ,l

2
j
← 06×6;

10: Nl1j
← Nl1j

∪ {l2j}; Nl2j
← Nl2j

∪ {l1j}
11: Hl1j ,l

2
j

+← µK1T
j K2

j , fl1j
+← K1T

j

(
µkj − λk

j

)
,

12: fl2j
+← K2T

j

(
µkj − λk

j

)
Backward sweep

13: for i in SE do
14: ui = τ + ST

i fi; Ui = Hi,iSi; Di = ST
i Ui; D

−1
i ;

15: Pi = I6×6 − Ui

(
D−1

i ST
i

)
;

16: if C(Ni) > 0 then
17: H̄π(i),Ni

+← H̄i,NiP
T
i ,

18: H̄Ni,Ni

−←
(
H̄i,Ni

Si

)
D−1

i

(
ST
i H̄

T
i,Ni

)
,

19: f̄Ni

+← H̄i,Ni

[
PT
i ab,i +

(
SiD

−1
i

)
ui

]
20: for j in Ni do
21: Nj ← Nj − {i};
22: if j /∈ Nπ(i) then
23: Nπ(i) ← Nπ(i) + {j}; Nj ← Nj + {π(i)};
24: Hπ(i),j ← 06×6;
25: if π(i) ∈ Ni then
26: Hπ(i),π(i)

+←
(
Hi,π(i)P

T
i

)T
;

27: if π(i) > 0 then
28: Ha

i,i = Hi,i −
(
UiD

−1
i

)
UT
i ; Hπ(i),π(i)

+← Ha
i,i

29: fπ(i)
+← Ha

i,iab,i + fi −
(
UiD

−1
i

)
ui

Second forward sweep (roll-out)
30: for i in SEr do
31: ui

−←
(
H̄i,Ni

Si

)T
āNi

;
32: ν̇

(k+1)
i = D−1

i ui −
(
UiD

−1
i

)T
(aπ(i) + ab,i);

33: ak+1
i = ak+1

π(i) + Siν̇
(k+1)
i + ab,i

where

L(ν̇,a,λ) =
∑
i=S

{
1

2
aTi Hiai − fTi ai − τT

i ν̇i

}
+ (38)

∑
i∈E

{
λT
i

(
K1

i al1i +K2
i al2i − ki

)}
.

Note that the proximal regularization term in Eq. (37) does
not depend on ν̇, so the proximal term can be pushed inside
the inner minimization problem to get

λk+1 := max
λk

{
min
ν̇

(
L(ν̇,a,λ)− 1

2µ
∥λ− λk∥2

)}
. (39)

This max-min problem will be solved using DP.

Algorithm 2 LCABA reduced two-sweep algorithm

Require: ∆fis, Kis,
(
H̄NiSi

)
s, Uis, Dis, Sis, SE

Backward sweep
1: for i in SE do
2: ∆ui ← ST

i ∆fi
3: if C(Ni) > 0 then
4: ∆̄fNi

+←
(
H̄Ni

Si

) (
D−1

i ∆ui

)
5: if π(i) > 0 then
6: ∆fπ(i)

+← ∆fi − Ui

(
D−1

i ∆ui

)
Second forward sweep (roll-out)

7: ∆a0 ← 06×1

8: for i in SEr do
9: if C(Ni) > 0 then

10: ∆ui
−←

(
H̄i,Ni

Si

)T
∆̄aNi

11: ∆ν̇
(k+1)
i = D−1

i ∆ui −
(
UiD

−1
i

)T
∆aπ(i);

12: ∆ai = ∆aπ(i) + Si∆ν̇
(k+1)
i

Algorithm 3 LCABA

Require: q, ν, τ , Sis, His, Kis, kis, f exti , SE , µ, λ0, E , ϵ,
max iter

1: Execute the three-sweep algorithm in Algorithm 1.
2: for k in range(1, max iter) do
3: for i in in S do
4: ∆fi ← 06;
5: for i in E do
6: ∆ki ← K1

i al1i +K2
i al2i − ki;

7: ∆fl2i
−← µK2T

i ∆ki; ∆fl1i
−← µK1T

i ∆ki;

8: λk+1
i

+← µ∆ki;
9: if min(∥ν̇k − ν̇k−1∥∞, ∥∆k̄∥∞) < ϵ then

10: break
11: Execute reduced-two sweep algorithm in Algorithm 2
12: ν̇k+1 ← ν̇k +∆ν̇;

From the Lagrangian’s structure, we anticipate linear
quadratic terms depending on ai and the Lagrange multipliers
associated with cut-joints of the loops supported by the ith

link. Therefore, we hypothesize the optimal cost-to-go La-
grangian (similarly to [11]) for a spanning-tree leaf-link at
a DP step to have the following quadratic form

V L∗
i

(
ai, λ̄Ni

)
:=

1

2

[
ai
λ̄Ni

]T [
Hi,i K̄T

i,Ni

K̄i,Ni −L̄Ni,Ni

] [
ai
λ̄Ni

]
−[

fi
k̄Ni

]T [
ai
λ̄Ni

]
, (40)

where λ̄Ni
, K̄i,Ni

, L̄Ni,Ni
and k̄Ni

aggregates the dual
variables, constraint matrices, dual Hessian terms, and desired
constraint accelerations for all the loop constraints supported
by the link i such that Ni = LS(i).
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For every j, k ∈ Ni these terms are defined as follows

λ̄Ni
=

[
. . . λT

j . . .
]T

, k̄Ni
=

[
. . . kT

j . . .
]T

(41)

K̄i,Ni =


...

Kj,i

...

 , L̄Ni,Ni =


Lk,k . . . Lk,j . . .

...
. . .

...
. . .

LT
k,j . . . Lj,j . . .
...

. . .
...

. . .

 ,

At the start of the DP elimination, the terms above are
initialized to zero and updated by iterating over the cut-joints
j ∈ E as follows

Kj,l1j
← K1

j , Kj,l2j
← K2

j , (42a)

Lj,j ←
1

µ
Imj ,mj

, (42b)

kj ←
1

µ
λk
j . (42c)

For each joint i ∈ S,

Hi,i ← Hi.

Similarly to LCABA, the DP recurrence relation for prox-
BBO is given by

V L∗ (aπ(i), λ̄Ni

)
=

1

2
aTπ(i)Hπ(i),π(i)aπ(i) − fTπ(i)aπ(i)+

λ̄
T
Nπ(i)

K̄π(i),Nπ(i)
aπ(i) + min

ν̇i,ai

{
V L∗
i

(
ai, λ̄Ni

)
− τT

i ν̇i

}
.

(43)

Solving the minimization problem above, link i’s acceleration
ai is again eliminated via substitution using the joint recur-
rence relation to get following simplified unconstrained QP
similarly to Eq. (28)

minimize
ν̇i

1

2
ν̇T
i Diν̇i −

[
τ i + ST

i

(
fi − K̄T

i,Ni
λ̄Ni
−

Hi,i

(
aπ(i) + ab,i

))]T
ν̇i, (44)

optimizing which gives

ν̇∗
i = D−1

i

[
τ i + ST

i

(
fi − K̄T

i,Ni
λ̄Ni
−Hi,i

(
aπ(i) + ab,i

))]
.

(45)

Substituting the optimal ν̇∗
i expression back in to Eq. (43)

gives a quadratic form for the function V ∗ (aπ(i), λ̄Ni

)
with

the following updates to the quadratic form coefficients

Hπ(i),π(i)
+← PiHi,i, (46a)

fπ(i)
+← Pi (fi −Hi,iab,i)−Hi,iSiD

−1
i τ i, (46b)

K̄π(i),Ni

+← K̄i,Ni
PT
i , (46c)

L̄Ni,Ni

+← K̄i,NiSiD
−1
i ST

i K̄
T
i,Ni

, (46d)

k̄Ni

−← K̄i,Ni

[
PT
i ab,i + SiD

−1
i

(
τ i + ST

i fi
)]
. (46e)

The inertia and force recursions in Eq. (46a) and Eq. (46b)
are identical to ABA and LCABA equations in Eq. (30).
However, the Hi,i and fi terms computed by proxBBO may
differ numerically from the corresponding terms in LCABA
because proxBBO’s Lagrangian (see Eq. (38)) does not contain

the quadratic penalty terms of the ALF used in LCABA. The
ith link’s constraint matrix K̄i,Ni is backpropagated to the
parent link π(i) in Eq. (46c). The set LS(π(i)) for each link
can be recursively computed using the following update rule

Nπ(i) ← Nπ(i) ∪Ni. (47)

Early elimination. The spanning-tree leaf-links can be elimi-
nated sequentially using the recursive formulae above until all
the links are eliminated. Subsequently, the optimal Lagrange
multipliers can be computed. However, this would introduce
expensive coupling between all the loops, eventually leading
to O(n + m2n + m3) operations. To counter this, both [13]
and [14] propose eliminating loop constraints as soon as all
links supporting the corresponding loop are eliminated. We
adopt this approach for proxBBO as well.

The last link to be eliminated from loop j is the loop root
link i = rj by its definition in Section III. The set of loops
supported by link i, Ni, can be partitioned into two sets: i)
the set of loops for which the link i is a root denoted as Ri

and ii) the remaining neighbor loops Ui := Ni − Ri. The
optimal cost-to-go Lagrangian function from Eq. (40) is also
expanded based on this partition when it is the ith link’s turn
to be eliminated as follows

V L∗
i

(
ai, λ̄U , λ̄R

)
:=

1

2

 ai
λ̄Ui

λ̄Ri

T  Hi,i K̄T
i,Ui

K̄T
i,Ri

K̄i,Ui
−L̄Ui,Ui

−L̄Ui,Ri

K̄i,Ri −L̄T
Ui,Ri

−L̄Ri,Ri

 ai
λ̄Ui

λ̄Ri

−
 fi
k̄Ui

k̄Ri

T  ai
λ̄Ui

λ̄Ri

 . (48)

The Lagrange multipliers associated with the loops in Ri are
now eliminated, which leads to the following updates to the
DP cost function and the ith link’s neighbor set

V L∗
i

(
ai, λ̄U

)
← max

λ̄R

V L∗
i

(
ai, λ̄U , λ̄R

)
, (49)

Ni ← Ui. (50)

The optimizer λ̄∗
R of Eq. (49) is given by the necessary first-

order optimality conditions of the corresponding QP problem

λ̄
∗
Ri

= L̄−1
Ri,Ri

(
K̄i,Ri

ai − L̄T
Ui,Ri

λ̄Ui
− k̄Ri

)
, (51)

where L̄Ri,Ri
is invertible because it is initialized as a positive

definite diagonal matrix due to the proximal regularization
(see Eq. (42)), which is followed by adding symmetric positive
semi-definite matrices to its diagonal blocks in Eq. (46d). Sub-
stituting optimal Lagrange multipliers back into the original
DP cost function in Eq. (48) gives the following recursive
formulae for the coefficients of V L∗

i

(
ai, λ̄U

)
[
Hi,i K̄T

i,Ui

K̄i,Ui −L̄Ui,Ui

]
+←

[
K̄T

i,Ri

−L̄Ui,Ri

]
L̄−1
Ri,Ri

[
K̄T

i,Ri

−L̄Ui,Ri

]T
,

(52)[
fi
k̄Ui

]
+←

[
K̄T

i,Ri

−L̄Ui,Ri

]
L̄−1
Ri,Ri

k̄Ri
. (53)
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Fig. 5: Graphical illustration of the proxBBO’s elimination
steps. Compared to LCABA, additional red nodes are intro-
duced to represent cut-joint Lagrange multipliers.

This way, all links and loop constraints are eliminated from
the leaf links down to the root link. The second forward
sweep then computes the numerical values of the joint accel-
erations and the optimal Lagrange multipliers using Eq. (45)
and Eq. (51) respectively. Note that similarly to the LCABA
algorithm, the subsequent proximal iterations are efficient
because only relatively inexpensive matrix-vector operations
in Eqs. 42c, 46b, 46e, 53, 51 and 45 need to be evaluated.

B. ProxBBO illustrative example

The proxBBO algorithm is illustrated in Fig. 5 on the
same example mechanism used in LCABA illustration in Sec-
tion IV-B. Compared to LCABA, proxBBO introduces addi-
tional nodes for the Lagrange multipliers of each cut-joint
constraint, depicted as red nodes in Fig. 5a. Similarly to
LCABA, elimination of each link or constraint introduces
coupling between all the neighbors (including a link’s parent)
of the eliminated link or constraint. Eliminating links 6, 5,
and 4 results in a graph where the constraint 12 is coupled
with the link 3 as seen in Fig. 5b. Then eliminating links 11,
10 and 9 couple constraints 13 and link 3 as seen in Fig. 5c.
Eliminating link 8 introduces coupling between constraints 12
and 13 as seen in Fig. 5d since link 8 supports both the loops.
Upon eliminating the next leaf link, link 7, we arrive at link
3 in Fig. 5e, which is the root link of both loop 12 and loop
13. Both the constraints are then eliminated to get the graph
in Fig. 5f, from where the elimination steps proceed identically
to the ABA algorithm.

C. ProxBBO algorithm

This subsection presents proxBBO in an algorithmic form.
Similarly to LCABA in Section IV-C, the three sweep algo-
rithm corresponding to the first proximal iteration is presented
in Algorithm 4, followed by the reduced sweep for the
subsequent iterations in Algorithm 5 and the entire proxBBO

algorithm in Algorithm 6. Again similarly to LCABA, the lines
corresponding to ABA, proxPV and the proxBBO algorithms
are colored in black, brown and blue respectively.

Algorithm 4 proxBBO three-sweep algorithm

Require: q, ν, τ , Sis, His, Kis, kis, f exti , µ, λ0, E
First forward sweep

1: for i in S do
2: vi = vπ(i) + Siνi

3: ab,i = vi × Siνi

4: Hi,i ← Hi; fi ← f exti − vi ×∗ (Hivi)
5: Ni ← {}
6: for j in E do
7: l1jKj ← K1

j ; l2jKj ← K2
j ;

8: Lj,j ←
1

µ
Imj ,mj

; kj
+← 1

µ
λ0
j ;

9: Nl1j
← Nl1j

∪ {j}; Nl2j
← Nl2j

∪ {j};
Backward sweep

10: for i in Sr do
11: if C(Ri) > 0 then
12: Ui ← Ni −Ri; Ni ← Ui;
13:

[
Hi,i K̄T

i,Ui

K̄i,Ui −L̄Ui,Ui

]
+←

[
K̄T

i,Ri

−L̄Ui,Ri

]
L̄−1
Ri,Ri

[
K̄T

i,Ri

−L̄Ui,Ri

]T
;

14:

[
fi
k̄Ui

]
+←

[
K̄T

i,Ri

−L̄Ui,Ri

]
L̄−1
Ri,Ri

k̄Ri
;

15: ui = τ + ST
i fi; Ui = Hi,iSi; Di = ST

i Ui; D
−1
i ;

16: Pi = I6×6 −
(
UiD

−1
i

)
ST
i ;

17: if C(Ni) > 0 then
18: Rπ(i)

∪←
(
Ni ∩Nπ(i)

)
; Nπ(i)

∪← Ni;
19: K̄π(i),Ni

+← K̄i,Ni
PT
i ;

20: L̄Ni,Ni

+←
(
K̄i,NiSi

)
D−1

i

(
K̄i,NiSi

)T
;

21: k̄Ni

−← K̄i,Ni

[
PT
i ab,i + SiD

−1
i ui

]
;

22: if π(i) > 0 then
23: Ha

i,i = Hi,i −
(
UiD

−1
i

)
UT
i

24: Hπ(i),π(i)
+← Ha

i,i

25: fπ(i)
+← −Ha

i,iab,i + fi −
(
UiD

−1
i

)
ui

Second forward sweep (roll-out)
26: for i in S do
27: if C(Ni) > 0 then
28: ui

−←
(
K̄i,Ni

Si

)T
λ̄
1
Ni

29: ν̇1
i = D−1

i ui −
(
UiD

−1
i

)T
(aπ(i) + ab,i);

30: a1i = a1π(i) + Siν̇
1
i + ab,i

31: if C(Ri) > 0 then
32: λ̄

1
Ri

= L̄−1
Ri,Ri

(
K̄i,Ri

a1i − L̄T
Ui,Ri

λ̄
1
Ui
− k̄Ri

)

D. ProxBBO complexity analysis

Let the maximum number of loops supported by any link
be

mb = max
i∈S
C(Ni). (54)

The three-sweep algorithm from Algorithm 4 corresponding to
the first proximal iteration is first analyzed. Using reasoning
similar to that of LCABA analysis, the first forward sweep can
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Algorithm 5 proxBBO reduced two-sweep algorithm

Require: ∆fis, ∆u, Kis,
(
K̄i,Ni

Si

)
s, Uis, Dis, Sis

1: for i in Sr do
2: if C(Ri) > 0 then

3:

[
∆fi
∆k̄Ui

]
+←

[
K̄T

i,Ri

−L̄Ui,Ri

]
L̄−1
Ri,Ri

∆k̄Ri
;

4: ∆ui ← ST
i ∆fi;

5: if C(Ni) > 0 then
6: ∆k̄Ni

+←
(
K̄i,Ni

Si

) (
D−1

i ∆ui

)
;

7: if π(i) > 0 then
8: ∆fπ(i)

+← ∆fi − Ui

(
D−1

i ∆ui

)
;

Second forward sweep (roll-out)
9: ∆a0 ← 06;

10: for i in S do
11: if C(Ni) > 0 then
12: ∆ui ← −

(
K̄i,Ni

Si

)T
∆λ̄Ni

;
13: ∆ν̇

(k+1)
i = D−1

i ∆ui −
(
UiD

−1
i

)T
∆aπ(i);

14: ∆ai = ∆aπ(i) + Si∆ν̇
(k+1)
i ;

15: if C(Ri) > 0 then
16: ∆λ̄

k+1
Ri

= L̄−1
Ri,Ri

(
K̄i,Ri∆ak+1

i −
L̄T
Ui,Ri

∆λ̄
k+1
Ui
−∆k̄Ri

)
;

Algorithm 6 proxBBO

Require: q, ν, τ , Sis, His, Kis, kis, f exti , µ, λ0, E , ϵ,
max iter

1: Execute the three-sweep algorithm in Algorithm 4.
2: for k in range(1, max iter) do
3: for i in in S do
4: ∆fi ← 06

5: for i in E do
6: ∆kk

i ←
1

µ
∆λk

i ;

7: if min(∥∆ν̇∥∞, ∥∆k̄E∥∞) < ϵ then
8: break
9: Execute reduced-two sweep algorithm in Algorithm 2;

10: ν̇k+1 ← ν̇k +∆ν̇;
11: λ̄

k+1
E ← λ̄

k
E +∆λ̄E ;

be shown to require O(n+m) operations. The second forward
sweep is more expensive than LCABA due to the line 32,
which requires O(C(Ni)

2) operations, bringing the total cost
of the second forward sweep to O(n + m2

bn). The backward
sweep is the most expensive part, where back-propagating the
constraint matrices, constraint coupling and the constraint ac-
celerations in lines 19, 20 and 21 incur O(C(Ni)), O(C(Ni)

2)
and O(C(Ni)) operations respectively at each link i bringing
their total worst-case cost to O(m2

bn). ProxBBO algorithm
also requires factorizing the constraint coupling matrices in
line 13, incurring a cost cubic in the number of eliminated
constraints. This most-expensive factorization cost is O(m3

b)
upper-bounded by O(m3) operations, which is realized when
all the constraints are coupled. This brings the backward
sweep cost to O(n + m2

bn + m3
b). The reduced two-sweeps

in Algorithm 2 reuse the factorization from the three-sweep

algorithm and incur a lower cost of O(n + m2
bn) operations.

Therefore, the total worst-case complexity of the proxBBO
three-sweep algorithm, being dominated by the backward
sweep computations, is O(n + m2

bn + m3
b). While the worst-

case computational complexity of LCABA required patholog-
ical cases to manifest, the proxBBO algorithm’s worst-case
complexity is likelier to be encountered in the common case
when the loops are external and coupled, e.g., ground contact
for a quadruped.

VI. EXPERIMENTS

This section discusses the C++ implementation of LCABA
and proxBBO, presents the computational benchmarking of
the algorithms on various robot setups and investigates the
scaling of the algorithms for different topologies.

A. Implementation

The recursive algorithms LCABA and proxBBO are imple-
mented in C++ on top of the efficient dynamics library PINOC-
CHIO [24], and computationally benchmarked with the joint-
space algorithm proxLTL, whose state-of-the-art version [34]
is implemented in PINOCCHIO. All these three algorithms,
being implemented in C++ and identically leveraging PINOC-
CHIO’s efficient rigid-body dynamics functions, contribute
to benchmarking fairness. The proxLTL implementation in
Pinocchio is particularly mature with implementation improve-
ments since [34], and leverages vectorization, which gives it
quadratic scaling as opposed to the theoretically expected cu-
bic scaling [12], making the comparison between the recursive
and the joint-space algorithms particularly fair towards the
joint-space algorithms. All timings were benchmarked on a
laptop running Ubuntu 22.04 LTS with an Intel® Core™
Ultra 7 165H CPU, and the code was compiled using the
Clang 19.1.3 compiler.

B. Benchmarking on robot setups

We benchmark the presented algorithms on five robot sce-
narios consisting of internal closed-loops. We start with the
16 DoF Allegro Hand (AH) 1 holding a cube with its four
fingertips. Connect-type 3D constraints, which allow relative
rotation but not relative translation, are imposed at the contact
point between the fingertips and the cube. The next example
involves two Allegro hands collaboratively holding a cube.
Subsequently, the two AHs holding the cube are attached
to a humanoid2 robot’s wrists to investigate the scaling of
the algorithms. Then, 6D weld-type constraints are imposed
between the humanoid robot’s feet and the ground, testing the
algorithms on a combination of internal and external loops.
Then we consider the Digit humanoid robot, which has three
closed loops on each leg, standing with weld constraints on
the feet. This is followed by a digit robot standing and holding

1https://github.com/Gepetto/example-robot-data/tree/
8d899847c8e7531a3d723b9647a79748056b0414/robots/
allegro hand description/urdf accessed on Aug 19, 2024

2https://github.com/stack-of-tasks/pinocchio/blob/
25714c7d738b08e98201871757811525db74f2aa/models/simple humanoid.urdf

https://github.com/Gepetto/example-robot-data/tree/8d899847c8e7531a3d723b9647a79748056b0414/robots/allegro_hand_description/urdf
https://github.com/Gepetto/example-robot-data/tree/8d899847c8e7531a3d723b9647a79748056b0414/robots/allegro_hand_description/urdf
https://github.com/Gepetto/example-robot-data/tree/8d899847c8e7531a3d723b9647a79748056b0414/robots/allegro_hand_description/urdf
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a box with its wrists. Finally, we consider the example of two
Digit platforms collaboratively holding a box with their wrists
while standing.

The results of the benchmarking are listed in Table II.
The robot name is listed on the left, with the superscript
indicating the number of robots. The constraints are listed as
T, F, or H, depending on whether the constraint is imposed
on the fingertip, feet, or hand. The three closed-loops in
each of Digit’s legs are modeled by cutting a link involved
in the loop and introducing a fixed joint, denoted C. The
subscript on the constraint indicates the type of constraint,
and the superscript indicates the number of such imposed
constraints. For each example, the timings are listed for one
proximal/ALM iteration and three iterations to indicate how
the cost might scale for a higher number of iterations. The
computation timings are averaged over 100,0000 samples and
are reported in µs. The benchmarking was done in Ubuntu’s
terminal mode to avoid interference with the background
processes affecting benchmarking results, and Intel’s Turbo
Boost is left turned on since we did not observe appreciable
differences in computation timings between different runs.
For reference, the computation timings of the vanilla ABA
algorithm for unconstrained dynamics are also reported in the
last column.

For a single Allegro Hand grasping a cube, proxLTL is the
fastest algorithm, since the Allegro Hand’s topology best suits
the joint-space algorithms. It has extensive branching and short
depth, with four fingers, each having four joints emerging from
a fixed base. The resulting JSIM matrix enjoys a favorable
sparsity structure that is even block-diagonal. The LCABA
algorithm and the proxBBO algorithm display similar perfor-
mance for this example. ProxBBO is expected to be more ex-
pensive than LCABA for theese examples because it requires
additional factorizations for eliminating Lagrange multipliers
and it does not benefit from different elimination-ordering for
a given spanning tree, unlike LCABA. However, for the cube-
in-hand tasks, proxBBO is particularly expensive because all
the loops are coupled through the free-floating cube leading
to its worst-case (more on the worst case in Section VI-C)
cubic complexity. For the case of two Allegro Hands holding
a cube, LCABA emerges as the most efficient algorithm and
remains so for the rest of the cases with larger robots due
to its lower computational complexity. ProxBBO scales the
worst in this contact-rich scenarios involving the Allegro Hand
because all the constraints are coupled and propagated to the
base. For the Digit robot, both the recursive algorithms scale
than the higher-complexity proxLTL algorithm, with LCABA
being the fastest among the recursive algorithms. ProxBBO’s
improved performance on the Digit platform is due to limited
coupling among constraints due to the closed loops in the legs
being local. For the case of two Digits together holding a box,
LCABA is even over 6X faster than the proxLTL algorithm.

C. Scaling results

This subsection studies how the algorithms scale for dif-
ferent robot topologies, starting with a single loop with a

TABLE II: Computational timings of the proposed algorithms
LCABA and proxBBO compared with proxLTL [34] in µs is
averaged over 100,000 samples. Timings of ABA [1] is pro-
vided for reference. The number of proximal/ALM iterations
executed are indicated in the parentheses, system DoF within
curly braces, and constraint dimension within the box brackets.
Note that 6D constraints used for each loop in Digit’s leg leads
to a redundant constraint formulation.

System LCABA BBO LTL ABA
AH-cube-T 4

3D(1){22}[12] 4.91 6.35 3.96 2.29
AH-cube-T 4

3D(3) 6.28 7.6 5.21 -
AH2-cube-T 8

3D(1){38}[24] 7.87 15.6 9.37 4.2
AH2-cube-T 8

3D(3) 9.7 19.3 12.4 -
Hum-AH2-cube-T 8

3D(1){73}[24] 14.6 30.7 21.4 8.8
Hum-AH2-cube-T 8

3D(3) 16.6 35.6 24.9 -
Hum-AH2-cube-F 2

6DT
8
3D(1) 15.6 35.8 29.0 8.8

{73}[36]
Hum-AH2-cube-F 2

6DT
8
3D (3) 18.2 43.1 33.5 -

Digit-F2
6DC6

6D (1){44}[48] 9.96 14.7 23.1 5.5
Digit-F2

6DC6
6D (3){44}[48] 12.4 18.4 28.4 -

Digit-cube-F2
6DC6

6DT2
3D (1) 12.0 18.0 28.9 5.9

{50}[54]
Digit-cube-F2

6DC6
6DT2

3D (3) 14.8 22.0 33.9 -
Digit2-cube-F4

6D C12
6D T4

3D (1) 23.5 44.2 142.6 11.9
{94}[108]

Digit2-cube-F4
6D C12

6D T4
3D (3) 31.0 58.8 168 -

varying number of links, followed by a chain of loops, a worst-
case mechanism topology where every loop is coupled with
every other loop, and finally, a topology that particularly favors
LCABA over proxBBO.

Single loop. A schematic diagram of a cycle of n links is
shown in Fig. 6a, with the last link connected to the first
link through a 6D weld joint (shown in red) and Fig. 6b
shows the computation timings in µs for the first prox/ALM
iteration. The proxLTL algorithm scales superlinearly with the
number of links, as expected. Note that its cost is empirically
observed to be quadratic and not the theoretically expected
cubic cost due to the efficient implementation that leverages
vectorization. Between the recursive algorithms, proxBBO
holds a slight advantage over LCABA for longer loops. This
is believed to be due to proxBBO’s implementation having a
smaller memory footprint in this case, which is beneficial for
using the CPU cache efficiently. Our proxBBO implementation
re-used existing variables in PINOCCHIO’s data structure for
Hi,i, while LCABA required the creating a new object for
storing its inertias H̄ .

Chain of loops. Next, we benchmark the algorithms on a
chain of loops as shown in Fig. 7a, with each loop consisting
of seven links. The computation timings plotted in Fig. 7b
follow a similar trend as the single loop case for the same
reasons, with proxBBO being slightly faster than LCABA and
proxLTL being the slowest.

Worst-case mechanism topology. The algorithms are next
benchmarked on a mechanism topology shown in Fig. 8a,
where each loop formed by a cut-joint contains at least one
joint from the corresponding loop formed by every other cut-
joint. The computation timings in Fig. 8b show how the differ-
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ent algorithms scale with the increasing number of cut-joints.
All algorithms scale superlinearly, and the results indicate
that recursive algorithms provide no speed-up compared to
the joint-space algorithms in the worst-case scenario, which is
fortunately not encountered in practice.

Favorable mechanism topology. We now consider a topology
where there is branching arising from a single link, and
the branch tips are connected with each other with a 6D
constraint as seen in Fig. 9a. LCABA’s minimum degree
heuristic ensures that the neighbor count for a leaf link being
eliminated does not exceed one. The computation timings
shown in Fig. 9b demonstrate that LCABA scaling is much
better than proxBBO, which scales better than proxLTL for
this mechanism topology.

D. Convergence of the algorithms

This section investigates the convergence of the constraint
residuals (the ℓ∞ norm of the residuals to be precise) and the
numerical stability of the algorithms presented. Benchmarking
is done for the second case in Table II with two Allegro
hands grasping a cube with their fingertips, that leads to a
singular case due to redundant constraint formulation. The
results, plotted in Fig. 10 for µ = 105, depict mean and
standard deviation of the constraint residual with the boxes and
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Fig. 8: Computational scaling of the different CDAs for cyclic
mechanisms. a) A simple worst-case mechanism topology. b)
Computation timings in µs for the first prox/ALM iteration for
the cycle mechanism.
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Fig. 9: Computational scaling for a mechanism topology that
favors LCABA over proxBBO. a) the favorable mechanism
topology with branching from a single link i, b) computation
timings in µs for the first prox/ALM iteration as the number
of branches mb increases.

maximum and minimum values of the constraint residual with
the lines. These statistics, generated over 10,000 randomly
sampled robot positions and control inputs, indicate rapid con-
vergence for all three algorithms within a few iterations. Faster
convergence was observed for higher values of µ. However, the
augmented Lagrangian method behind LCABA, is known to
be numerically sensitive to high-values of the quadratic penalty
parameters µ. Therefore, the numerical sensitivity of the dif-
ferent algorithms were investigated by comparing the solution
(ν̇) of different algorithms against the relatively numerically
stable solution of proxLTL with µ = 103 and the results are
plotted in Fig. 11 over different values of µ. As expected,
the Riccati-recursion and ALM-based LCABA algorithm’s
solution deviated from the reference solution with increasing
µ values, while both proxBBO and proxLTL demonstrated
numerical stability up to µ = 1011. Values of µ between
105 and 107 seem to provide a good mix of fast convergence
and good-enough numerical stability. We observed similar
behavior across other setups and tasks, where the values of
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Fig. 10: Benchmarking convergence of the different algorithms
on the two Allegro hands grasping a cube (second case
in Table II with 24 constraints T8

3D). This leads to a redundant
constraint formulation that requires proximal methods. The
constraint residual’s inf norm is shown for 11 proximal/ALM
iterations for µ = 105 for 10,000 randomly generated exam-
ples. The box depicts mean and standard deviation, while line
depicts the maximum and minimum values.
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Fig. 11: Relative residual (
∥ν̇ − ν̇ref∥
∥ν̇ref∥

) is plotted for the

algorithms as µ increases, using the relatively numerically
stable proxLTL algorithm with µ = 103 as the reference over
10,000 randomly generated samples. The box depicts mean
and standard deviation, while line depicts the maximum and
minimum values.

lead to convergence within a tolerance of 10−6 typically within
3 iterations.

VII. DISCUSSIONS

This section critically discusses the presented algorithms,
LCABA and proxBBO, their connections to existing literature,
and potential directions for extensions. We first discuss how
they generalize Riccati recursion to graphs. We then discuss
the impact of the choice of spanning tree on the computational
efficiency of the algorithms. We then highlight the connec-
tions between proxBBO and LCABA and how they can be
combined to form a unified algorithm before connecting the
algorithms to factor graphs and probabilistic inference. Finally,
we discuss the choice of implicit versus explicit constraint
formulations and its implications for the presented algorithms.

A. Generalizes Riccati recursion to graphs

The ABA [28], [29] and the PV algorithms [9] are
known [49], [11] to generalize the celebrated Riccati recursion
to tree-structured unconstrained and constrained equivalent
LQR problems respectively. Such tree-structured Riccati re-
cursions, parallelly developed in control and optimization
literature [50], [51], are useful for solving stochastic optimal
control problems with scenario trees [52]. The presented
recursive algorithms eliminate links from leaves to root for a
spanning tree using the joint acceleration recurrence relation
similar to dynamics equation elimination via substitution in
LQR solvers, effectively making them generalization of Ric-
cati recursion beyond tree-structure to general graphs with
loops. A straightforward occurrence of loops in an LQR
problem is in periodic optimal control problems, where the
periodicity constraint imposes the initial and terminal states
to be equal. Efficient numerical algorithms for such periodic
optimal control has been well studied, see [53], [54] and
references therein. However, they do not appear to have been
generalized to general graph structures.

Applying the presented algorithms to control problems for
combining scenario trees and periodicity constraints, as well as
studying the convergence and stabilization properties of such
controllers, is a promising avenue for future work. Permitting
graph structure in optimal control further enables interest-
ing applications such as periodicity constraints at different
frequencies for different subsets of states or for enforcing
synchronization constraints in multi-agent systems at different
time instants.

B. Spanning tree selection

It is important to choose the spanning tree that is assumed as
an input to the presented algorithms appropriately, especially
since it can significantly impact their computational effi-
ciency. In practical scenarios, the spanning-tree choice is often
straightforward. External contact constraints, e.g., finger-cube
contact constraints from Fig. 1a, are modeled as cut joints, and
the robot joints are included in the spanning tree to prioritize
the mechanism’s kinematic consistency. Even for robots with
kinematic loops like the Digit robot, the actuated joints and
the floating-base joint are typically chosen to get a spanning
tree, and the closed-loop constraints and the sub-mechanism
constraints are modeled as cut joints. This also often yields a
favorable spanning tree for the presented algorithms.

It may be desirable to algorithmically automate the opti-
mal spanning tree selection by solving a secondary discrete-
optimization problem for a given mechanism and algorithm.
However, it is well-known that finding an optimal elimina-
tion order, even without the restriction of conforming to a
spanning-tree ordering, is an NP-complete [45]. Developing
an effective algorithm for this problem is non-trivial and is
unlikely to provide significant speed-ups for many existing
robot topologies over manual spanning-tree selection. There-
fore, this aspect is decidedly considered out of the scope of
this paper so as not to overload it.
Relaxing spanning-tree elimination order: The spanning-
tree based elimination ordering can be relaxed to fully leverage
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heuristics from numerical linear algebra such as minimum
degree or minimum fill-in. However, such an approach does
not exploit ‘term-level’ sparsity inherent in joint acceleration
recurrence relations. It is likely to be less efficient than
the presented algorithms for most practical robots. It also
results in a significantly more complex algorithm, for example,
eliminating a joint and the corresponding link in the middle
of a chain of one DoF joints results in constructing a new
fictitious two DoF joint between the link’s parent and child
link after tedious calculations and the new constraint moreover
does not, in general, have term-level sparsity. Overall, this
approach is sensitive to singularities necessitating expensive
pivoting methods and corresponds to general-purpose sparse
linear solvers, which are known to be less efficient than
specialized algorithms [1].

C. Relation to factor graphs and probabilistic inference

The GPLC problem for a mechanism with loops can also
be interpreted as a probabilistic inference problem over a
Bayesian network [55]. Consider the link accelerations, joint
accelerations, and joint torques as random variables, with a
Bayesian prior on each link’s acceleration given by a Gaussian
distribution whose covariance is the link’s inverse inertia
matrix and mean is the link’s acceleration in the absence of
joint constraints. Each joint imposes a deterministic constraint
between the accelerations of different links. Being an equiva-
lent representation of the GPLC problem, solving for the max-
imum likelihood solution of this network, conditioned upon
the applied joint torques, provides the solution to constrained
dynamics problem. The factor graph perspective is not merely
theoretically interesting, since non-serial DP and the variable
elimination perspective used to derive this paper’s algorithms
are the same ideas underpinning inference algorithms [23] over
factor graphs. This implies that the dynamics algorithms from
this paper are suitable for probabilistic inference over factor
graphs whose priors and constraints conform to the GPLC
problem structure.

D. Connections between proxBBO and LCABA

LCABA can be derived from proxBBO’s proximal formu-
lation by eliminating Lagrange multipliers before eliminating
any primal variable. Starting with the proximal formulation
in Eq. (37), swap the order in which λ and ν̇ are eliminated
to get:

ν̇(k+1) = argmin
ν̇

min
λ

{
−L(ν̇,λ) + 1

2µ
∥λ− λ(k)∥2

}
,

(55)
where solving the inner minimization problem yields
LCABA’s ALM formulation from Eq. (20) for the outer
minimization problem. The equivalence between ALM and
dual PPA is well-known in optimization [56] and has also
been observed between constrainedABA and proxPV in the
context of CDAs for kinematic trees and external loops [12].

Therefore, the main difference between LCABA and prox-
BBO is the elimination ordering of the variables from the
proximal formulation. ProxBBO can be more efficient than

LCABA when propagating constraints of less than 6 dimen-
sions through the graph, as seen for the Allegro Hand in Sec-
tion VI, and is also more efficient for constraints involving
a high number of links compared to the LCABA algorithm,
making it suitable for constraints like center-of-mass (CoM)
constraints. This suggests that a unified algorithm that can
switch to proxBBO or LCABA based on the type of constraints
and the connectivity graph structure can offer some speed-up.
Like spanning-tree selection, this second-order enhancement
requires discrete optimization and is left for future work.
Similarly to constrainedABA [12], LCABA also generalizes
the compliant constraint model in MUJOCO[57], with the
first ALM iteration corresponding to solving MUJOCO’s soft-
Gauss principle (if dual variable initial guess λ0 = 0) and the
subsequent iterations converging to rigid constraint model.

E. Explicit versus implicit constraint formulations

This paper focused exclusively on the implicit constraint
formulation. Explicit constraint formulations are readily spec-
ified only for a limited set of constraints like four-bar linkages
with single DoF joints and gear submechanisms. In other
cases, it needs to be derived from the implicit formulation,
leading to an additional cost that can get particularly expensive
for large loops. Another common strategy to obtain an explicit
constraint formulation is to assign a subset of joints as inde-
pendent, which is, however, prone to kinematic singularities.
Compared to these approaches, the implicit formulation is
more readily specified, can handle a wider variety of con-
straints efficiently, and is less prone to singularities.

There exists Jain’s linear constraint embedding (LCE) [39]
approach that exploits explicit constraint formulation to pro-
pose efficient recursive algorithms. LCE, while particularly
suited for local loops, can get expensive for larger loops
(like the dual arm manipulation constraint or the feet-ground
contact constraint for legged robots) because its cost increases
cubically with the number of joints supporting the largest loop.
While not as optimized for local loops as LCE, the presented
algorithms can handle a wider variety of constraints efficiently.
Investigating LCE’s speedup compared to the presented algo-
rithms for mechanisms with only local loops is interesting.
Still, due to the complexity of implementing LCE within
PINOCCHIO for fair comparison, this is considered outside the
scope of this paper. Moreover, the LCE approach being com-
patible with the GPLC derivation [41], and can be embedded
in the derivation of proxBBO or LCABA to obtain a hybrid
algorithm that uses implicit formulation for larger loops and
explicit formulation for local loops. However, it is non-trivial
to combine these approaches, and the computational benefit
of such a hybrid algorithm compared to LCABA/proxBBO
is unclear. Answering these questions must be left for future
work so as not to overload this paper.

VIII. CONCLUSION

This paper culminates the development of low-complexity
CDAs, proxBBO and LCABA, in the context of proximal
dynamics formulation [34] began in [12], by extending proxPV
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and constrainedABA respectively to efficiently address the
wider class mechanisms with internal closed loops. It also
culminates in revisiting and reviving recursive low-complexity
CDAs [11], [12], that had fallen out of favor in modern
simulators compared to the joint-space algorithms by demon-
strating compelling computational speed-ups compared to the
state-of-the-art joint-space algorithm proxLTL, despite prox-
LTL’s particularly efficient implementation in the PINOCCHIO
library. LCABA matches proxLTL’s performance for lower-
dimensional robots while providing over 6x speed-ups for
higher-dimensional robots like humanoids with several inter-
nal closed loops. The presented algorithms leverage proxi-
mal/ALM iterations, enabling them to account for singular
cases due to redundant constraints and singular configurations
in a straightforward manner.

The presented algorithms’ ability to address internal loops
and singular cases, and their efficient proximal iterations in
particular, make them ready and well-suited to be used as
the inner solvers within optimization-based frictional contact
simulators, whether they are ADMM-based [6] or interior-
point based [58]. The differentiability of the proximal operator
also makes them suitable for gradient-based optimization
methods. Through follow-up research in this direction, this
paper’s algorithms will serve as the algorithmic foundation for
speeding up contact-rich simulation and computation-intensive
control applications such as MPC. Beyond mechanics, the
presented algorithms can also find applications in control
and estimation by effectively generalizing Riccati recursion
to general graphs and through the factor graph connection.

Limitations of the presented algorithms were also identified
such as LCABA being numerically sensitive to high penalty
parameters µ The other weaknesses were the algorithms’
assumption that a spanning tree is provided as input, and being
limited to a spanning tree elimination order and implicit con-
straint formulations. These drawbacks can also be addressed
by developing a discrete-optimization framework to compute
the optimal spanning tree or even to even relax spanning-tree
elimination ordering constraint when beneficial, and finally by
proposing a hybrid formulation that can use explicit constraint
formulation for local submechanisms like gears, belts, and
four-bar linkages. These enhancements, being involved, are
left for future work.
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