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Constrained Articulated Body Dynamics Algorithms
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Abstract—Rigid-body dynamics algorithms have played an
essential role in robotics development. By finely exploiting the
underlying robot structure, they allow the computation of the
robot kinematics, dynamics, and related physical quantities with
low complexity, enabling their integration into chipsets with
limited resources or their evaluation at very high frequency for
demanding applications (e.g., model predictive control, large-
scale simulation, reinforcement learning, etc.). While most of
these algorithms operate on constraint-free settings, only a few
have been proposed so far to adequately account for constrained
dynamical systems while depicting low algorithmic complexity. In
this article, we introduce a series of new algorithms with reduced
(and lowest) complexity for the forward simulation of constrained
dynamical systems. Notably, we revisit the so-called articulated
body algorithm (ABA) and the Popov-Vereshchagin algorithm
(PV) in the light of proximal-point optimization and introduce
two new algorithms, called constrainedABA and proxPV. These
two new algorithms depict linear complexities while being robust
to singular cases (e.g., redundant constraints, singular con-
straints, etc.). We establish the connection with existing literature
formulations, especially the relaxed formulation at the heart of
the MuJoCo and Drake simulators. We also propose an efficient
and new algorithm to compute the damped Delassus inverse
matrix with the lowest known computational complexity. All
these algorithms have been implemented inside the open-source
framework Pinocchio and depict, on a wide range of robotic
systems ranging from robot manipulators to complex humanoid
robots, state-of-the-art performances compared to alternative
solutions of the literature.

I. INTRODUCTION

Efficient rigid body dynamics algorithms [1] have played
an essential role in robotics development. By finely exploiting
the underlying robot structure to compute the robot kinematics,
dynamics, and related physical quantities with low computa-
tional complexity, these algorithms enable dynamics evalua-
tion in chip sets with limited resources and at high frequencies
for demanding applications (e.g., computed torque control,
model predictive control, large-scale simulation, reinforcement
learning, etc.).

Most simulators [2]–[6] currently use such low-complexity
algorithms only in constraint-free settings. Though a few low-
complexity algorithms have been proposed for constrained
dynamical systems [7]–[10], they suffer from being fairly com-
plex to derive and implement. Also, they cannot adequately
deal with singular cases (e.g., redundant constraints, singular
constraints, etc.). Perhaps due to these issues, the usage of
efficient constrained dynamics algorithms in simulators is
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currently low. Addressing these issues, we present a series
of new constrained dynamics algorithms based on proximal
algorithms in this paper that are simple and effectively han-
dle singular cases. Our proximal perspective also presents
a unified framework to interpret several existing disparate
algorithms as special cases of the presented algorithms.

A. Related work

The first O(n) complexity unconstrained forward dynamics
algorithm, where n is the degrees of freedom (DoF) of
the robot, was proposed by Vereshchagin in [11], but was
unknown in west for decades. Their approach solved the
linear quadratic regulator (LQR) problem associated with
the Gauss’ principle of least constraint (GPLC) [12], which
is an optimization-based formulation of classical mechanics,
using the dynamic programming (DP) principle [13]. Nearly
a decade later, a practically identical algorithm [14] called the
articulated body algorithm (ABA) was proposed, which was
derived using a different perspective of cleverly propagating
the solution of Newton-Euler equations through a kinematic
tree. The ABA algorithm was further refined in [15] with
insights such as improvements in computational efficiency
through the use of local frames. Vereshchagin’s LQR-ABA
connection was also independently discovered by Western
researchers in [16], where the similarities between the ABA
algorithm and Kalman filter were recognized to derive ABA
using filtering theory literature. However, the approach in
[16] is fairly complex, and [11] (see [10] for an expository
derivation) remains a significantly clearer connection between
LQR and ABA.

These O(n) complexity algorithms are efficient compared
to computing the joint-space inertia matrix (JSIM) [17] and
factorizing it, which has a complexity of O(n3). However,
branching in kinematic trees induces sparsity in the JSIM,
which can be exploited by the Cholesky decomposition (LTL
algorithm) developed in [18] with O(nd2) complexity, where d
is the depth of the kinematic tree. The LTL algorithm is faster
than the O(n) algorithms for small robots (n < 7) and can
be competitive even for robots as large as quadrupeds (n 18),
due to branching in the kinematic tree.

The unconstrained forward dynamics algorithm in [11] was
quickly extended to account for motion constraints in the
Popov-Vereshchagin algorithm (PV algorithm) [7], [19] with
O(n + m2d + m3) complexity, where m is the dimension-
ality of motion constraints, by encoding the constraints as
equality constraints in the associated LQR problem. However,
the PV algorithm remained sparsely known and used in the
robotics community. Addressing this issue, a recent work [10]
provides an accessible and expository derivation of the PV
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algorithm along with two original extensions, namely, PV-soft
and PV-early algorithms, each with only O(n+m) complexity.
The PV-soft algorithm relaxes the motion constraints with
a quadratic penalty, allowing it to obtain low complexity.
However, it does not solve the constraints exactly. On the
other hand, the PV-early algorithm exactly solves the motion
constraints and yet achieves its low complexity by aggressively
eliminating the Lagrange multipliers associated with motion
constraints as early as possible. This prevents the accumulation
of Lagrange multipliers during the DP recursions, that occurs
in the original PV algorithm contributing to the O(m2 +m3)
complexity terms. The PV-early algorithm uses the singular
value decomposition (SVD) [20] of a symmetric matrix at
every joint, whose rank is equal to the respective joint’s
DoF, for early elimination of the Lagrange multipliers. While
an efficient analytical formula exists for computing SVD of
symmetric rank one (SR-1) matrices due to single DoF joints,
the general applicability of the PV-early algorithm is impacted
by the computational expense of SVD for multi-DoF joints.
Moreover, the PV algorithm is sensitive to singular/redundant
constraints, and the popular approach of Tikhonov regulariza-
tion employed in [10] does not adequately solve constrained
dynamics as it can bias solutions towards the origin and
adversely affect constraint satisfaction.

The most widely used constrained dynamics algorithm
for kinematic trees [21] solves the problem in joint space,
resulting in a relatively higher computational complexity of
O(nd2 + m2d + md2 + m3) despite exploiting branching-
induced sparsity. Recent work [22] generalized this approach
to robustly handle singular/redundant constraints using proxi-
mal algorithms [23]. A similar proximal perspective can be ap-
plied to the low-complexity constrained dynamics algorithms
to derive efficient and robust algorithms, forming the basis of
this paper.

The main bottleneck in the joint-space constraint dynamics
algorithms [21], [22] is the computation and factorization of
the Delassus matrix [24], [25], also known as the inverse
operational space inertia (OSIM) matrix [26], which itself has
a computational complexity of O(nd2+m2d+m3) [21]. The
Delassus matrix computation is crucial to many tasks, such
as contact simulation, differentiating constrained dynamics,
and operational space control, just to name a few. Therefore,
unsurprisingly, several dedicated low-complexity algorithms
have been proposed for computing it. One of the first such al-
gorithms was the Kreutz-Jain-Rodriguez (KJR) algorithm [27],
which used a three-sweep computation structure similar to
ABA to achieve O(n+m2d+m3). A further improvement on
this propagation-based algorithm was proposed in EFPA [28]
using extended force propagators (EFP) [29] to achieve a
lower complexity of O(n+md+m3). Recent work [10] also
showed that the PV algorithm computes the Delassus matrix
as an intermediate quantity, which yielded another efficient
algorithm, PV-OSIM, which requires only two computation
sweeps, unlike EFPA or KJR. Despite its higher computational
complexity of O(n + m2d + m3), PV-OSIM was found
to be more efficient [10] than the EFPA for most realistic
robots. Finally, the PV-OSIM’s computational complexity was
further optimized in [30] by using the compositionality of

EFPs to the lowest known complexity of O(n + m3). All
the above algorithms have the m3 complexity term due to
the factorization of the Delassus matrix, which is generally
dense. Specifically for robots with branching at the base (e.g.,
quadrupeds, humanoids), it was shown [10] that using matrix
inversion lemma (MIL) [31] could accelerate the inverse
Delassus matrix computation by up to 30%.

Though we restrict our scope in this paper to kinematic
trees with motion constraints relative to the inertial ground
frame, we mention constrained dynamics algorithms for closed
loops for the sake of completeness. Most robot simulators do
not cope with closed-loop mechanisms properly, and often,
when they do, they resort to using inefficient methods like
using general-purpose linear solvers to solve the contact KKT
matrix. Recent work in [22] extended Featherstone’s LTL algo-
rithm [18], [21] to account for loop closure constraints with the
same computational complexity of O(n2d+nd2+md2+m3)
as the original LTL algorithm and provided an implementation
within the open source robot dynamics simulator library
PINOCCHIO [6]. However, more efficient algorithms were
proposed in the past, which can be an improvement over [22].
In the late 1980s, the PV algorithm was independently redis-
covered and extended to a more general class of mechanisms,
including those with internal closed loops in [9] and [8]. Both
these algorithms are practically identical with the worst-case
complexity of O(n + m2d + m3) and employ loop-cutting
with zero mass phantom links to be able to use a propagation-
based algorithm similar in spirit to ABA. However, these
algorithms are quite complex and are not yet supported in
robotics simulators.

B. Contributions

Our paper contains five main contributions, three of which
correspond to algorithmic contributions:

(i) The constrainedABA algorithm: We introduce a O(n+
m) complexity-constrained dynamics algorithm for trees
called constrainedABA (cABA). Its derivation and im-
plementation are significantly simpler than the existing
O(n+m) algorithms like the PV-early while being more
efficient and more generally applicable to singular cases.

(ii) The proxPV algorithm: Revisiting the PV algorithm in
the light of proximal-point optimization, we introduce
proxPV that makes the PV algorithm robust to singular
cases with minimal computational overhead.

(iii) The cABA-OSIM algorithm: We introduce the most
efficient known algorithm with O(n + m2) complexity
to compute the damped Delassus inverse matrix, called
cABA-OSIM. In contrast, all the existing algorithms have
an additional O(m3) complexity term in the general case
due to the Delassus matrix factorization.

(iv) Analysis and detailed benchmarking: Our proximal
point perspective presents a unifying framework high-
lighting connections between seemingly disparate solvers
like constrainedABA, PV-early, and the soft Gauss’ prin-
ciple formulation at the heart of the MUJOCO simulator
and PV-soft algorithms. We present a detailed bench-
marking of the different algorithms regarding the number
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of operations and computational speed for various robot
models.

(v) Open-source software implementation: The con-
strainedABA algorithm proposed here is available to the
community in the open-source software toolbox PINOC-
CHIO1 [6].

C. Paper organization
In the rest of this section, we introduce notation used in the

paper. In the next section, we review and introduce proximal
formulation of constrained dynamics, as well as the proxLTL,
proxLTLs and PV algorithms. Section.III subsequently derives
the constrained ABA algorithm, which is followed by an al-
gorithmic presentation in Section IV. Subsequently, the fourth
proximal algorithm proxPV is introduced in Section V, which
is followed by the damped Delassus inverse algorithm in Sec-
tion III. The connections between the proposed algorithms
and existing algorithms are analyzed in Section VII before
performing detailed benchmarking of the proposed algorithms
in Section VIII. The paper is finally concluded with final
discussions and conclusions in Section IX and Section X.

D. Notation
Lower-case symbols (x), bold-faced lower-case symbols

(x), and upper-case symbols (X) are scalars, vectors, and
matrices, respectively. Let Sk+ and Sk++ denote the space of
symmetric positive semidefinite and positive definite matrices
of size k × k.

Let q ∈ Q, ν ∈ TqQ ≃ Rn and ν̇ be the robot generalized
configuration, generalized velocity, and generalized accelera-
tions respectively. Q, TqQ and n are the robot’s configuration
space, Q’s tangent space at q and degrees of freedom (DoF)
respectively. Let τ ∈ T ∗

qQ ≃ Rn be the generalized forces
exerted on the robot. Let S = {1, 2, . . . , nb} be an ordered list
of a kinematic tree’s link indices such that i < j if the ith link
is an ancestor of the jth link. By convention, we assume the
0th link to be a global inertial frame. For floating base robots,
1st link is the floating base. The acceleration of the ith joint is
denoted as ν̇i. Occasionally, we refer to the accelerations of a
set of joints {ν̇i, i ∈ γ}, which we will conveniently represent
as ν̇γ . The difference between ν̇i and ν̇γ will be clear from
the context.

We will use Featherstone’s spatial algebra [1] to refer to
rigid body quantities. Let iXj ∈ SE(3) (special Euclidean
group in 3 dimensions) be the spatial transform of the jth

link in the ith link’s frame expressed as a 6× 6 spatial trans-
formation matrix. The 6D spatial velocity and acceleration of
a rigid body i is vi ∈ M6 and, ai ∈ M6 respectively, where
M6 is a spatial motion vector space. The spatial forces acting
on the ith body is fi ∈ F6, where F6 is the spatial force vector
space that is dual to M6. The spatial inertia matrix Hi ∈ I6×6

(represented as a S6++ matrix) maps M6 to F6. The cross-
product operators on motion and force vectors are denoted as
× and ×∗ respectively. Refer [1] for more details on the spatial
algebra. Table I gives a comprehensive list of the symbols used
all over the paper.

1https://github.com/stack-of-tasks/pinocchio

Symbol Meaning
d Depth of the kinematic tree.
q Robot configuration.
Q Robot configuration space.
ν Generalized robot velocities.

TqQ Tangent space of Q at q.
ν̇ Generalized robot accelerations.
τ Generalized robot forces.

T ∗
q Q Dual tangent space of Q at q.
S Topologically ordered list of tree link indices.
vi ith link’s 6D spatial velocity.
M6 Motion vector space in spatial algebra.
ai ith link’s 6D spatial acceleration.
fi 6D spatial forces acting on the ith link.
F6 Force vector space, dual of M6.
Hi ith link’s 6D spatial inertia tensor.
× Cross-product operator on spatial motion vectors.
×∗ Cross-product operator on spatial force vectors.
fc Motion constraint function in generalized coordinate space.
M Robot inertia matrix in generalized coordinates (JSIM).

ν̇free Generalized accelerations when unconstrained.
v∗
c Desired constraint velocities.

a∗
c Desired constraint accelerations.

Jfc Geometric Jacobian of fc.

c
Generalized forces due to gravity, centripetal and

Coriolis effects.
γfc

Constraint accelerations due to Coriolis effects.
λ Lagrange multipliers and constraint force magnitudes.
L Lagrangian of GPLC.
Λ OSIM or inverse Delassus matrix.
µ Proximal operator parameter.
g Dual function of GPLC.
Λµ Damped Delassus inverse matrix.
Mµ Constraint augmented Inertia matrix.
Si Spans ith joint’s motion subspace.
ab,i ith link’s bias acceleration vector.
Ki ith link’s constraint matrix.
ki ith link’s desired constraint accelerations.

agrav Spatial acceleration-due-to-gravity vector.
π(i) ith link’s parent link.
γ(i) Set of ith link’s children links.
H̃i ith link’s constraint augmented inertia tensor Eq. (32).
f̃i ith link’s constraint augmented force vector Eq. (32).

desc(i) Set of all descendants of the ith link.
HA

i ith link’s constrained articulated body inertia.

fAi
ith link’s resultant force due to all constraints and forces

on descendant links.
Di Apparent constrained inertia felt at the ith joint.
Pi Backward force propagation matrix at the ith joint.

ES(i) Set of motion-constrained links among ith link’s descendants.
Sr List S reversed.
E Set of all links that are motion-constrained (end-effectors).

C(·) Returns cardinality of a set.
SE Sublist of S, whose links support an end-effector.
SEr List SE reversed.
∆fi Force update vector in constrainedABA reduced sweep.
KA

i Constraint matrix felt at ith link for all ES(i) constraints.
LA
i Intermediate term to recursively accumulate Λ−1.

R−1
E Diagonal constraint weighting matrix in soft Gauss’ principle.

jPi EFP - backward propagates ith link’s forces to jth link.
cca(i, j) ith and jth links’ closest common ancestor.

jΩi
Spatial inverse inertia of the ith link considering

a sub-tree rooted at the jth link.

N Set of branching links supporting strictly more of
constraints than any child link.

jKi Constraint-space EFP.
iLej ,ek

Delassus matrix block for ej and ek constraints for a
sub-tree rooted at ith link.

TABLE I: List of symbols and notations used in the article.

https://github.com/stack-of-tasks/pinocchio
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II. PROXIMAL REFORMULATION OF CONSTRAINED
DYNAMICS

A. Constrained dynamics in generalized coordinates

Constrained dynamics. Suppose that the robot motion is
constrained by the following holonomic (sometimes also called
rheonomic [1, Sec.3.4] due to time-dependence) constraint,

fc(q, t) = 0, (1)

where fc : Q×R 7→ Rm is a smooth function, differentiating
which with respect to time gives

Jfc(q, t)ν = v∗
c(q, t), (2)

where Jfc ∈ Rm×n is the geometric Jacobian of the con-
straints, and v∗

c = −∂fc
∂t ∈ Rm. We note that even

non-holonomic constraints can be expressed in the form
of Eq. (2) [32, Section 7.1]. We will omit explicitly writing
the time-dependence from now on for notational brevity. We
differentiate the constraint Eq. (2) with respect to time one
more time and impose them in Gauss’ principle of least
constraint [12], [33], [34], according to which a robot at state
(q,ν) undergoes accelerations that minimize the following
equality-constrained strongly convex quadratic program (QP):

minimize
ν̇

1

2
∥ν̇ − ν̇free(q, ν̇, τ )∥2M(q) (3a)

subject to Jfc(q)ν̇ + J̇fc(q,ν)ν = a∗
c , (3b)

where M(q) ∈ Sn++ is the joint-space inertia matrix (JSIM)
and ν̇free(q, ν̇, τ ) is the joint-space acceleration in the absence
of constraints

ν̇free(q, ν̇, τ ) := M−1(q) (τ − c(q,ν)) , (4)

where c(q,ν) is the generalized force vector due to gravity,
Coriolis and centripetal effects. a∗

c = v̇∗
c ∈ Rm is the desired

constraint acceleration. In practice the constraints accumulate
numerical integration errors during simulation and can be
stabilized by including a constraint error (residual of Eq. (1))
negative feedback term in a∗

c , with methods like Baumgarte’s
stabilization [35]. Let

γfc(q,ν) := J̇fc(q,ν)ν, (5)

be the bias accelerations. The variable dependencies will be
dropped for brevity whenever obvious from the context.

Constrained dynamics Lagrangian. The solution to the QP
above is the primal-dual saddle point of the Lagrangian [36]

(ν̇∗,λ∗) ∈ arg max
λ

min
ν̇
L(ν̇,λ), (6)

where

L(ν̇,λ) := 1

2
∥ν̇ − ν̇free∥2M + λT (Jfc ν̇ + γfc − a∗

c), (7)

and λ ∈ Rm are the Lagrange multipliers (also called dual
variables) of the QP in Eq. (3).

Since Eq. (3) is an equality-constrained QP, its primal-dual
saddle point is immediately given by solving the Karush-
Kuhn-Tucker (KKT) [36] system implied by the first-order
necessary optimality conditions [37],[

M JT
fc

Jfc 0m×m

] [
ν̇
λ

]
=

[
M ν̇free

−γfc + a∗
c

]
. (8)

Solving the KKT system. Because M is positive definite, the
KKT system in Eq. (8) is most often solved by eliminating ν̇
using

ν̇∗ = ν̇free −M−1JT
fcλ, (9)

back-substituting which in Eq. (6), gives the dual function

g(λ) = −1

2
λTΛ−1λ+

(
Jfc ν̇free + γfc − a∗

c

)T
λ, (10)

where Λ−1(q) := JfcM
−1JT

fc
is the so-called Delassus matrix

[24], [25], also known as the inverse operational space inertial
matrix (inverse OSIM) [26].

Remark 1. Λ−1 ∈ Sm+ and the dual function above is concave.
Furthermore, if Jfc is full row-rank, Λ−1 ∈ Sm++, the dual
function g(λ) is strongly concave, Λ−1 is invertible and the
OSIM matrix Λ exists.

The dual function is maximized to obtain the optimal
Lagrange multipliers by solving the linear equation

Λ−1λ∗ = Jfc ν̇free + γfc − a∗
c . (11)

The frequently used approach to solve the equation
above is computing M using the composite rigid body
algorithm (CRBA) [17] and its Cholesky factorization
using Featherstone’s LTL algorithm [18], which exploits
branching-induced sparsity. Then, the LTL algorithm is
exploited to efficiently compute Λ−1 as well [21], which
is finally factorized using dense Cholesky factorization.
However, as mentioned in Section I-A, this approach
is computationally expensive with a total computational
complexity of O(nd2 + m2d + md2 + m3), where d is the
depth of the kinematic tree, n the number of joints and m is
the number of constraints.

Nonuniqueness of solutions. In practice, Jfc often does not
have full rank or loses it due to redundant constraints or kine-
matic singularities, making the Λ−1 singular. This prevents
the use of efficient algorithms like Cholesky factorization.
Typically, Tikhonov regularization (adding a positive definite
diagonal matrix to Λ−1) is employed to address this issue.
But Tikhonov regularization can be interpreted as a weighted
ℓ-2 norm squared penalty on constraint force magnitudes
(∥λ∥2R). This penalizes high constraint forces thereby biasing
λ towards the origin, preventing constraint satisfaction and
can pose numerical issues if the regularization parameter is
too small. An alternate approach that does not introduce such
bias is the truncated singular value decomposition (SVD)
[20]. However, this is computationally more expensive than
Cholesky factorization and is therefore not commonly used.
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B. Proximal point algorithm

An exact and efficient alternative to Tikhonov regularization
or SVD that we will leverage is the proximal point algorithm
(PPA) [23], [38], which is effective for robotics problems [22],
[39], [40], and most often requiring few iterations (each of
which is efficient) to converge for robot dynamics problems
[22].

We first introduce the proximal operator of a convex func-
tion, f : Rn → R

proxµ,f (x
k) := arg min

x

{
f(x) +

1

2µ
∥x− xk∥2

}
, (12)

where µ ∈ (0,∞) is the proximal operator parameter, which
can be interpreted as a step-size [23]. Please note that we
slightly abuse the notation and use ‘:=’ instead of ‘∈’ above
because the optimization problem above has a unique solu-
tion [23, Section 1.1], hence arg min returns a singleton
solution set. We will continue to use ‘:=’ or ‘=’ in the rest of
the paper when the arg optimization problems have a unique
solution. The PPA minimizes f(x) via fixed-point iterations
on the proximal operator until a termination criterion is met

xk+1 = proxµ,f (x
k). (13)

C. Constrained dynamics using the two QP approaches

We now describe two QP approaches to solve Eq. (3), that
are mathematically equivalent but differ computationally.

1) Dual proximal point method (proxLTL): Applying PPA
to optimize the dual function in Eq. (10) gives

λk+1 =proxµ,−g(λ
k) = arg min

λ
− g(λ) +

1

2µ
∥λ− λk∥2,

(14a)

=Λµ

(
Jfc ν̇free + γfc − a∗

c +
1

µ
λk

)
, (14b)

where Λ−1
µ := Λ−1 + 1

µI is the damped Delassus matrix.
Λ−1
µ ∈ Sm++ and can be factorized efficiently using Cholesky

decomposition. This factorization is computed once and re-
used, making each fixed point iteration fast. This algorithm,
which we will call proxLTL, was proposed in [22] and
was accompanied by an efficient C++ implementation in
the PINOCCHIO library [6]. ProxLTL converges to the exact
solution that satisfies motion constraints unlike the Tikhonov
regularization approach.

Remark 2. All the algorithmic developments in a paper can
be trivially extended to the case Λ−1

µ := Λ−1 + R−1
E , where

RE is a positive definite diagonal matrix. Such a choice can
permit variable weights on different constraints.

Assuming that the constraints are correctly modeled for
physical systems, the primal problem in Eq. (3) is always
feasible (meaning that the constraints are satisfiable). However,
numerically, the primal problem in Eq. (3) can be infeasible,
especially when there are redundant constraints and Baumgarte
terms [35] are added to a∗

c for constraint stabilization. Then,
the dual problem is unbounded above, and the PPA iterations
do not converge. However, in this situation, it has been shown

[41]–[43] that the primal residual converges to a desirable
value that is optimal in the least squares sense during the
PPA iterations. Therefore, the termination criteria for the
convergence of the PPA should monitor the least-squares error
given by

∥Λ−T (Λ−1λ− [Jfc ν̇free + γfc − a∗
c ])∥∞. (15)

Advantageously, the PPA algorithm converges to the optimal
value for feasible problems and to the least squares solution
for numerically infeasible problems automatically without any
modification to the algorithm.

2) Augmented Lagrangian method (proxLTLs): An alterna-
tive to proxLTL that can solve the QP in Eq. (3) exactly is the
augmented Lagrangian method [44], [45] (ALM), where the
augmented Lagrangian function is

LA(ν̇,λ) := L(ν̇,λ) + µ

2
∥Jfc ν̇ + γfc − a∗

c∥2. (16)

ALM iterations alternately optimize LA over its primal and
dual variables

ν̇k+1 = M−1
µ

{
M ν̇free − JT

fc

(
λk + µ

(
γfc − a∗

c

))}
,

(17a)

λk+1 = λk + µ
(
Jfc ν̇

k+1 + γfc − a∗
c

)
, (17b)

where Mµ := M + µJT
fc
Jfc is the augmented JSIM, with

the influence of the constraints from the quadratic term in
the augmented Lagrangian function. This formulation, which
we will call proxLTLs (proxLTL-soft), is interesting as Mµ

can be efficiently computed with a small modification to the
CRBA (see Section II-E) and efficiently factorized using the
LTL algorithm, leading to an algorithm that has a lower com-
putational complexity of O(nd2 +md), which is significantly
faster than the O(nd2 +m2d+md2 +m3) complexity of the
proxLTL algorithm. This difference arises because proxLTLs
does not compute or factorize the Λ−1 matrix. While the idea
of proxLTLs was briefly mentioned in [22], it was neither
implemented nor explored further, which we will do in this
paper.

3) Both approaches are equivalent: ProxLTL and prox-
LTLs are mathematically equivalent because dual PPA and the
ALM are equivalent [42], [46]. Theoretically, the sequence of
λk they compute are equal. However, they differ numerically
and computationally, with the difference arising due to the
order in which the primal and dual variables are optimized.
We now show the equivalence of proxLTL and proxLTLs by
recovering the ALM iterations in Eq. (17a) and Eq. (17b) from
the PPA iterations in Eq. (14)).

ProxLTL in Eq. (14) maximizes the dual function g(.), that
is obtained after minimizing the Lagrangian primal variables in
the saddle point problem (see Eq. (6)). However, since each
PPA iteration solves a feasible sub-problem that is strongly
convex and strongly concave in primal and dual variables, re-
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spectively with a unique primal-dual solution, this elimination
ordering can be reversed [47]

proxµ,−g(λ
k) = arg min

λ

[
−min

ν̇
L(ν̇,λ) + 1

2µ
∥λ− λk∥2

]
,

(18a)

= arg max
λ

[
min
ν̇
L(ν̇,λ)− 1

2µ
∥λ− λk∥2

]
, (18b)

= arg
λ

min
ν̇

max
λ

[
L(ν̇,λ)− 1

2µ
∥λ− λk∥2

]
, (18c)

where we define arg
λ

min
ν̇

max
λ

(.) :=
{
λk+1 :

(
λk+1, ν̇k+1

)
∈

arg min
ν̇

max
λ

(.)
}

. The maximizer over λ is obtained by
solving for gradient stationarity

λk+1 = λk + µ
(
Jfc ν̇ + γfc − a∗

c

)
, (19)

substituting which back in Eq. (18c) in the place of λ and
optimizing for the primal variables ν̇ gives

ν̇k+1 = M−1
µ

{
M ν̇free − JT

fc

(
λk + µ

(
γfc − a∗

c

))}
, (20)

which can be substituted back in Eq. (19) to compute the
numerical value of λk+1. Comparing the equations Eq. (19)
and Eq. (20) with Eq. (17b) and Eq. (17a) verifies that
proxLTL iterations and the ALM iterations are identical.

D. Constrained dynamics in maximal coordinates

Both proxLTL and proxLTLs algorithms have lower com-
plexity counterparts that can be derived by applying dynamic
programming (DP) on Gauss’ principle formulated in the so-
called maximal coordinates. Consider a link i constrained as

f i,mc (0Xi, t) = 0, (21)

where f i,mc : SE(3) × R 7→ Rmi is a smooth function,
differentiating which with respect to time gives

Ki(
0Xi, t)vi = kv

i (
0Xi, t), (22)

where Ki ∈ Rmi×6 is the geometric Jacobian of f i,mc w.r.t
0Xi and kv

i = −∂f i,mc

∂t ∈ Rmi . Differentiating the constraint
at the velocity-level one more time to get the constraint at
the acceleration-level and imposing it within the maximal
coordinate GPLC formulation [10] gives

minimize
ν̇,a

nb∑
i=1

{
1

2
aTi Hiai − fTi ai

}
(23a)

subject to ai = aπ(i) + Siν̇i + ab,i, i = 1, 2, . . . , nb,
(23b)

Kiai = ki, i = 1, 2, . . . , nb, (23c)
a0 = −agrav, (23d)

where fi is the resultant spatial force acting on the ith link
including the bias forces (−vi ×∗ Hivi) and ki = −K̇ivi +
k̇v
i ∈ Rmi . All the spatial quantities are expressed in the

inertial frame in our subsequent derivations for simplicity
of notation. Since the GPLC is expressed in the maximal
coordinates here, unlike the problem in Eq. (3), the joint
constraints are also included in Eq. (23b). π(i) is the parent

link of the ith link in the kinematic tree, νi ∈ Rni is the
ith joint’s generalized velocities, ν̇i ∈ Rni is the ith joint’s
generalized accelerations. Si is the ith joint’s motion subspace
matrix of size 6× ni, with ni being the ith joint’s DoF. Each
column vector of Si is an element in M6.

ab,i := vi × Siνi, (24)

is the ith link’s bias acceleration. The motion constraints are
encoded in Eq. (23c), where Ki, expressed as a matrix in
Rmi×6 and ki ∈ Rmi , are the constraint matrix and the desired
constraint accelerations. Each row vector of Ki is an element
in F6. A uniform acceleration field of minus acceleration-due-
to-gravity is added to all the links by fixing the root node
acceleration in Eq. (23d). This approach [15] spares us from
having to add the weight of each link to fi thereby providing
some computational speed up.

We now connect the constraints in Eq. (23c) to the joint-
space formulation constraints in Eq. (3b). Connection in the
other direction is not as interesting, since the constraints are
more naturally imposed on individual links. Suppose that Ji ∈
R6×n is the geometric Jacobian of the ith link, mapping the
generalized velocity ν to the joint spatial velocity vi. Then,

Jfc(q, t) :=

 K1J1
...

Knb
Jnb

 ; J̇fc(q,ν, t) :=

 K̇1J1 +K1J̇1
...

K̇nb
Jnb

+Knb
J̇nb


a∗
c(q,ν, t) :=

[
k̇vT
1 . . . k̇vT

nb

]T
(25)

E. Accelerating Mµ computation.

We now discuss the connection between the link inertias
Hi, the JSIM M and the augmented JSIM Mµ. From [48, Eq.
8.57], we have

M =

J1...
Jn


T H1

. . .
Hn


J1...
Jn

 . (26)

Considering the definition of Mµ and Eq. (25), we get the
equation

Mµ =

J1...
Jn


T H1 + µKT

1 K1

. . .
Hn + µKT

nKn


J1...
Jn


(27)

The equation above implies that the inertia of every con-
strained link can be updated as above and the CRBA can be
called to compute Mµ directly. This provides a minor speed-
up compared to first separately computing M using CRBA
and later adding the µJT

fc
Jfc terms. In the rest of this paper,

we will use this strategy to speed up Mµ computation in the
proxLTLs algorithm.

F. The PV algorithm

We now briefly review the PV algorithm [7], [19], an
efficient constrained dynamics algorithm with its origin in
the 1970s, see [10] for an expository derivation. It is a
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low-complexity counterpart to Featherstone’s LTL algorithm,
with a O(n + m2d + m3) complexity. Similarly to the LTL
approach, it first eliminates the primal variables from the
Lagrangian of the optimization problem in Eq. (23), but by
using DP, to obtain the dual function g(λ). The dual function
is optimized to compute the optimal dual values, which is
then used to compute the resulting accelerations ai during
a roll-out. It has a three-sweep structure analogous to ABA.
However, the PV algorithm assumes the invertibility of Λ−1,
and Tikhonov regularization was used in [10] to make the
algorithm applicable to singular cases. However, this biases
the constraint forces to be closer to the origin, so the motion
constraints will not be satisfied accurately.

III. CONSTRAINED ABA DERIVATION

In this section, we will derive the constrainedABA algo-
rithm. Further discussed later, constrainedABA is the low-
complexity, recursive analog of the proxLTLs algorithm
(see Section II-C2), that is derived from the maximal coor-
dinate GPLC formulation (see Eq. (23)). Therefore, similarly
to proxLTLs, we will solve the QP in Eq. (23) using the
ALM. This derivation closely follows the DP approach from
the PV algorithm derivation in [10], which applied DP on the
Lagrangian, resulting in a three-sweep algorithm. In contrast,
we will apply DP on the augmented Lagrangian, which gives
a similar three-sweep algorithm, and propose two efficient re-
duced sweeps associated with the subsequent ALM iterations.

All the link acceleration terms ais can be expressed as a
function of the joint accelerations ν̇is and the base link ac-
celeration a0, and these constraints will be eliminated through
substitution using Eq. (23b) and Eq. (23d). Therefore, we
include only the motion constraints Eq. (23c) as the joint
constraints in the Lagrangian of Eq. (23) defined as

Lm(ν̇,λ) :=

nb∑
i=1

{
1

2
aTi Hiai − fTi ai + λT

i (Kiai − ki)

}
,

(28)
and the augmented Lagrangian is

LA
m(ν̇,λ) := Lm(ν̇,λ) +

µ

2

nb∑
i=1

∥Kiai − ki∥2. (29)

Similarly to Section II-C2, applying ALM to Eq. (23)
provides the update equations

ν̇k+1 = min
ν̇
LA
m(ν̇,λk), (30a)

λk+1
i = λk

i + µ
{
Kia

k+1
i − ki

}
, ∀i ∈ S, (30b)

where λi are the dual variables corresponding to the ith link’s
motion constraints. We first solve Eq. (30a) leveraging the
dynamic programming principle.

A. DP-based derivation

Eq. (30a) is an unconstrained QP over ν̇. As a first step
to solving it, we collect all the LA

m terms (see Eq. (28)

and Eq. (29)) that are quadratic and linear in ai to obtain

LA
m

(
ν̇,λk

)
=

nb∑
i=1

{
1

2
aTi

(
Hi + µKT

i Ki

)
ai− (31)

(
fi +KT

i

(
µki − λk

i

))T

ai + const

}
,

where we remind readers that all the ais are functions of ν̇,
and ‘const’ consists of all the remaining terms in LA

m that
do not depend on ai. Considering the algebraic similarity of
equation above with Eq. (23), let us ‘update’ the Hi and fi
terms

H̃i := Hi + µKT
i Ki, f̃i := fi +KT

i

(
µki − λk

i

)
, (32)

to get the unconstrained QP problem

minimize
ν̇,a

nb∑
i=1

{
1

2
aTi H̃iai − f̃Ti ai

}
, (33)

where ai = aπ(i) + Siν̇i + ab,i, i = 1, 2, . . . , nb,

and a0 = −agrav.

The problem above is algebraically identical to an uncon-
strained forward dynamics problem and can be readily solved
using the ABA. For completeness, we now derive the ABA
algorithm using Vereshchagin’s DP approach [11], which is
algebraically identical to the Riccati recursion derived for the
standard discrete-time linear quadratic regulator (LQR) prob-
lem [10], [49]. Using the terminology from LQR literature, let
us define the ‘cost-to-go’ function

Vi(ai, ν̇desc(i)) :=
∑

j={i}∪desc(i)

{
1

2
aTj H̃jaj − f̃Tj aj

}
, (34)

as the GPLC objective considering the ith link and all its
descendants. Then the optimal cost-to-go function is

V ∗
i (ai) := min

ν̇desc(i)

Vi(ai, ν̇). (35)

With LQR being one of the few problems where DP is
computationally tractable, we know that V ∗

i (ai) is exactly
parametrized as quadratic form (see [49]), which we will
hypothesize

V ∗
i (ai) =

1

2
aTi H

A
i ai − fAT

i ai. (36)

From Bellman’s recursion [13], the optimal cost-to-go func-
tion of a link and its children are related as

V ∗
i (ai) =min

ν̇γ(i)

1

2
aTi H̃iai − f̃Ti ai +

∑
j∈γ(i)

V ∗
j (aj)

 (37)

=min
ν̇γ(i)

{
1

2
aTi H̃iai − f̃Ti ai+

∑
j∈γ(i)

V ∗
j (ai + Sj ν̇j + ab,j)

}
. (38)
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Substituting the assumed quadratic form from Eq. (36) for all
the V ∗

j (.) terms above yields

V ∗
i (ai) =min

ν̇γ(i)

{
1

2
aTi H̃iai − f̃Ti ai+

∑
j∈γ(i)

[
(ai+Sj ν̇j + ab,j)

THA
j (ai + Sj ν̇j + ab,j)−

fAT
j (ai + Sj ν̇j + ab,j)

]}
. (39)

Collecting all the terms involving ν̇j gives a positive definite
quadratic function in ν̇j , which is minimized by solving for
gradient stationarity condition

ν̇∗
j = D−1

j ST
j

{
fAj −HA

j (ai + ab,j)
}
, (40)

where Dj := ST
j H

A
j Sj and Di ∈ Sni

++. Substituting ν̇∗
j ’s

expression from above back in Eq. (39) results in a quadratic
expression in ai that is identical to the hypothesized quadratic
form in Eq. (36), with quadratic form’s coefficients given by
the recursive update equations

HA
i = H̃i +

∑
j∈γ(i)

PjH
A
j , (41a)

fAi = f̃i +
∑

j∈γ(i)

Pj

{
fAj −HA

j ab,j
}
, (41b)

where Pj := I6×6 − HA
j SjD

−1
j ST

j is the projection matrix
[14] that propagates inertia and force quantities from a child
link to its parent link after subtracting the component that
causes the child joint’s motion. For all leaf-nodes j in the
kinematic tree, we set HA

j = H̃j and fAj = f̃j , following
which we compute these terms for all the non-leaf links tree
recursively using Eq. (41). Thus, we can inductively show that
the cost-to-go function hypothesis in Eq. (36) is valid for all
links.

After the recursion in Eq. (41) reaches the root node 0 of
the tree, the value of −agrav is substituted in place of a0, and
in a forward-sweep from root to leaves (also called roll-out
in DP), the resulting joint accelerations and link accelerations
are computed using Eq. (40) and Eq. (23b) respectively.

Unsurprisingly, the recursive equations in Eq. (41) are
similar to the ABA [14], as constraint-related terms were
absorbed into inertia and force terms in Eq. (32). Despite
the algebraic similarity, the HA

i and fAi terms in Eq. (41)
may not be interpreted as the physical articulated body inertia
and the resultant spatial forces because of the mathematical
modification in Eq. (32) due to the augmented Lagrangian
terms of the constraints.
Details on fi: As explained in [10]

fi = Tiτ i − vi ×∗ Hivi + f exti −
∑

j∈γ(i)

Tjτ j ,

consisting of forces due to joint torques, reaction forces from
children joint torques, bias forces and external forces. Ti,
expressed as an ni × 6 matrix, is the ith joint’s active force
subspace matrix, such that Tiτ i is the force exerted on the ith

link. Each column of Ti is an element of F6. The active force

subspace matrix and the motion subspace matrices satisfy the
constraint [1, Eq. 35]

ST
i Ti = Ini

. (42)

We use fi in our derivation and algorithm presentation for
notational simplicity. However, please note that Ti does not
need to be explicitly computed because the algorithm eventu-
ally requires only the inner product of Si and fAi . in Eq. (40),
where Ti gets cancelled due to due to Eq. (42). The resultant
force on the ith link due to the torque of its children joints
τ j is the the sum of reaction force (that is part of fi and the
backward propagation of τ j’s contribution to fj (using the
backpropagation equation in Eq. (41)) is given by

−Tjτ j + PjTjτ j = −Tjτ j + (I6 −HA
j Sj(Dj)

−1ST
j )Tjτ j ,

= −HA
j SjD

−1
j τ j ,

thereby not requiring Tj computation as well.

IV. CONSTRAINED ABA ALGORITHM

We now present constrainedABA derived in the previous
section in an algorithmic form. Introducing some notation,
let ES(i) be the set of indices of the end-effector supported
by the ith link, which implies that these end-effectors are
descendants of the ith link that are in E . Let SE be the
sublist of S, consisting of only those links i ∈ S that support
constraints, meaning that the cardinality of ES(i) is greater
than 0, denoted by C(ES(i)) > 0. SEr is a reversed version
of SE .

We first present the three-sweep algorithm, which is com-
puted only during the first ALM iteration. For subsequent
ALM iterations, we present a fast reduced two-sweep al-
gorithm, that re-uses many of the terms computed in the
three-sweep algorithm. Finally, we present the constraintABA
algorithm itself and perform a complexity analysis. Please note
that there are some additional computation optimizations to
avoid unnecessary computations. Performing a second forward
sweep to compute accelerations for links not supporting con-
straints (S−SE ) is not useful during ALM iterations since they
do not have any constraints that would require the ALM’s
Lagrange multiplier updates. For the same reason, no back-
ward sweep is required for these links from the second ALM
iteration onwards, as there are no updated constraint forces that
need to be transmitted back. Therefore, to avoid unnecessary
computation, the reduced sweeps are not performed for these
links until the ALM iterations have converged.

A. Three-sweep constrainedABA algorithm

Algorithm 1 lists the three sweep part of constrainedABA.
It is identical to the original articulated-body algorithm [1],
[14] except for the line 5, where the inertia matrices and the
spatial force terms are updated to account for the influence
of the constraint. It requires modifying existing ABA imple-
mentations by adding only a few lines of code to obtain the
presented algorithm, thereby facilitating its implementation in
existing simulators and rigid-body dynamics libraries such as
RBDL [50], Pinocchio [6] or Drake [51].
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Algorithm 1 ConstrainedABA three-sweep algorithm

Require: q, ν, τ , Sis Kis, kis, µ, λk, robot model
First forward sweep

1: for i in S do
2: vi = vπ(i) + Siνi

3: ab,i = vi × Siνi

4: fAi ← fi+Tiτ i−vi×∗Hivi+f exti ; fAπ(i) ← fAπ(i)−Tiτ i

5: HA
i ← Hi + µKT

i Ki; fAi ← fAi +KT
i (µki − λk

i )
Backward sweep

6: for i in Sr do
7: Di = ST

i H
A
i Si; Pi = (I6×6 −HA

i Si(Di)
−1ST

i )
8: fAπ(i) ← fAπ(i) + Pi(f

A
i −HA

i ab,i)

9: HA
π(i) ← HA

π(i) + PiH
A
i

Second forward sweep (roll-out)
10: for i in SE do
11: ν̇

(k+1)∗
i = (Di)

−1ST
i

{
fAi −HA

i (ak+1
π(i) + ab,i)

}
12: ak+1

i = ak+1
π(i) + Siν̇

(k+1)∗
i + ab,i

B. Reduced two-sweep algorithm

For the subsequent ALM iterations, we now derive a fast
reduced two-sweep algorithm that computes fast sweeps by
re-using as many terms computed in Algorithm 1 as possible.
The main observation is that only the force update in Eq. (32)
changes between the ALM iterations, and we compute only
the modification to the force and acceleration terms due to this
force update in the two-sweep algorithm. This force term also
changes only for those links that support constraints SE .

Even in Eq. (32), only the λi term changes between ALM
iterations. These dual variables are updated using Eq. (30b).
Substituting Eq. (30b) in Eq. (32), we see that the spatial
force terms change by µKT

i

(
ki −Kia

k+1
i

)
. We introduce an

additional term ∆fi to keep track of these force updates. The
reduced sweep algorithm is presented in Algorithm 2.

Despite the reduced sweep algorithm appearing to be dis-
tinct from the three-sweep traditional ABA algorithm, we note
that it is strictly a subset of the three-sweep ABA algorithm.
This facilitates implementing the reduced sweeps since much
the source code of an existing ABA implementation can be
conveniently reused.

Algorithm 2 ConstrainedABA reduced two-sweep algorithm

Require: ∆fis, µ, Kis, kis, ais, Pis, Dis, Sis,
fAi s, HA

i s, robot model
Backward sweep

1: for i in SEr do
2: ∆fi ← ∆fi + µKT

i (ki −Kia
k
i )

3: ∆fπ(i) ← ∆fπ(i) + Pi∆fi
Second forward sweep (roll-out)

4: for i in SE do
5: ν̇

(k+1)∗
i = D−1

i ST
i

{
fAi +∆fi −HA

i

(
ak+1
π(i) + ab,i

)}
6: ak+1

i = ak+1
π(i) + Siν̇

(k+1)∗
i + ab,i

7: ∆fi = 06

C. ConstrainedABA algorithm

Using the three-sweep and reduced two-sweep algorithms,
we present the entire constrainedABA in Algorithm 3. The
algorithm takes as input the numerical tolerance ϵ ∈ R, ϵ > 0,
and the maximum number of iterations to determine the
convergence of the ALM method.

Algorithm 3 ConstrainedABA

Require: q, ν, τ , µ, max iter, Kis, kis, ϵ, ν̇0, λ0

robot model
1: Execute the three-sweep algorithm in Algorithm 1.
2: for i in in S do
3: ∆fi ← 06

4: for k in range(1, max iter) do
5: for i ∈ E do
6: λk = λk−1 + µ

{
Kia

k
i − ki

}
7: if min(∥ν̇k − ν̇k−1∥∞, ∥Kak − k∥∞) < ϵ then
8: break
9: Execute reduced-two sweep algorithm in Algorithm 2

10: for i in S − SE do
11: ν̇

(k+1)∗
i = (Di)

−1ST
i

{
fAi −HA

i (ak+1
π(i) + ab,i)

}
12: ak+1

i = ak+1
π(i) + Siν̇

(k+1)∗
i + ab,i

D. Complexity analysis

We now analyze the computational complexity of Algo-
rithm 1, where each line has a fixed computational cost except
for the line 5, which is proportional to number of rows in
Ki, corresponding to the number of constraints acting on the
ith link mi. The line 5 is executed at all constrained links.
Therefore, this line requires O(m) number of operations in
total. All the other lines are executed at most n number of
times (once per joint) and therefore require O(n) number of
operations. Combining these costs, we get O(m + n) as the
computational complexity for the three-sweep algorithm.

Very similar analysis can be made for the reduced sweep Al-
gorithm 2, where the line 2 requires O(m) operations while the
rest of the lines have a fixed cost and require O(n) operations,
bringing the total computational complexity of the two-sweep
algorithm to O(m+ n) as well.

Within constrainedABA (see Algorithm 3), the three-sweep
algorithm is computed once, and the two-sweep algorithm is
computed at most max iter−1 number of times, which is a
fixed number supplied by the user. Empirically, we find that
constrainedABA requires only a few iterations (nearly always
under 5), as we shall see in the benchmarking (see Sec. VIII)
on a diverse set of mechanisms. In practice, this brings the total
computational complexity of constrainedABA to O(m+ n).

V. PROXIMAL PV ALGORITHM

As mentioned in Section II-F, the PV algorithm in literature
[10] requires linear independence of the motion constraints
and in practice employs Tikhonov regularization to handle the
singular cases. However, this prevents the motion constraints
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from being satisfied even when feasible. This drawback of the
PV algorithm can be straightforwardly resolved by employing
the PPA (see Section II-C1) to obtain a proximal algorithm
version of the PV algorithm, that we shall call proxPV. We
only discuss the modifications to the original PV algorithm
that will provide us with the proxPV algorithm. For a detailed
derivation of the PV algorithm, the readers are referred to [10].

The PV algorithm computes the dual function g(λ) (both
Λ−1 and the affine terms) at the end of its backward sweep.
Similarly to proxLTL, the weighted regularization 1

µI is added
to Λ−1 to get Λ−1

µ , which is always invertible and can be ef-
ficiently factorized using the Cholesky factorization. Then the
dual function is maximized using the PPA until convergence
and the resulting robot accelerations are computed in the third
sweep. Effectively, only three lines are changed in the PV
algorithm to get the proxPV algorithm.

Though we do not include a full derivation, Algorithm 4
presents the entire proxPV algorithm to make this paper self-
contained. Every term in Algorithm 4 also has a physical
interpretation, and we refer readers to [10] for a detailed
discussion. Algorithm 4 requires additional notations defined
as follows: for ∀j ∈ γ(i), let

λA
i =

[
λi, . . . , λAT

j , . . .
]T

, KA
i =


Ki

...
KA

j
...

 ,

and:

LA
i =


Li

. . .
LA
j

. . .

 .

These three quantities collect all the terms related to motion
constraints on the subtree rooted at the ith link to make the
recursive formulae in the backward sweep work.
Complexity analysis: ProxPV’s complexity analysis is very
similar to that performed in [10]. The primary bottlenecks of
the Algorithm are line 10, which requires O(m2

i ) operations
at each link and the line 13 where the dual Hessian is
once factorized requiring O(m3) operations, further proximal
iterations re-use this factorization and only require O(m2)
operations. Similarly to the previous section, considering that
practical examples require only a few proximal iterations, the
practical computational complexity of the proxPV algorithm
is O(n+m2d+m3).

VI. EFFICIENT ALGORITHMS TO COMPUTE Λµ

In this section, we introduce a new algorithm, named cABA-
OSIM, to compute the damped Delassus matrix inverse Λµ

with the lowest computational complexity of O(n+m2) com-
pared to the next best algorithm of O(n+m3) complexity from
literature [30]. Λ−1

µ is the Hessian of the dual function of the
proximal formulation of constrained dynamics (see Eq. (10)),

Algorithm 4 Proximal PV solver

Require: q, ν, τ , Kis, kis, ϵ, max iter, λ0
0, robot

model
First forward sweep

1: for i in S do
2: vi = vπ(i) + Siνi

3: ab,i = vi × Siνi

4: fAi ← fAi + Tiτ i − vi ×∗ Hivi + f exti ; KA
i ← Ki;

li ← −ki; LA
i ← 0mi×mi

HA
i ← Hi;

fAπ(i) ← fAπ(i) − Tiτ i

Backward sweep
5: for i in Sr do
6: Di = ST

i H
A
i Si; Pi = (I6×6 −HA

i Si(Di)
−1ST

i )
7: fAπ(i) ← fAπ(i) + Pi(f

A
i −HA

i ab,i)

8: HA
π(i) ← HA

π(i) + PiH
A
i

9: KA
π(i) ←

[
KA

π(i)

KA
i PT

i

]
10: LA

π(i) ←
[
LA
π(i)

LA
i +KA

i Si(Di)
−1ST

i K
AT
i

]
11: lπ(i) ←

[
lπ(i)

li +KA
i {ab,i + SiD

−1
i ST

i (f
A
i −HA

i ab,i)}

]
12: for k in range(1, max iter) do
13: λk

0 = (LA
0 + 1

µI)
−1(

λk−1
0

µ +K0a0 + l0)

14: if
∥∥∥LAT

0

(
LA
0 λ

k
0 −K0a0 − l0

)∥∥∥
∞

< ϵ then
15: break
16: λA∗

0 = λk
0

Second forward sweep (roll-out)
17: for i in S do
18: ν̇∗

i = D−1
i ST

i

{
fAi −HA

i (aπ(i) + ab,i)−KAT
i λA∗

i

}
19: ai = aπ(i) + Siν̇

∗
i + ab,i

and is an important quantity used in constrained dynamics
simulation [10], [22] and operational space control [26].

The cABA-OSIM algorithm exploits a linear algebra iden-
tity known as the matrix inversion lemma [31] (also called
Morrison-Sherman-Woodbury formula), which states that

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,
(43)

where A ∈ Rn×n, U ∈ Rn×m, C ∈ Rm×m, V ∈ Rm×n, and
A and C matrices are assumed to be invertible. The identity
is useful for computing the inverse of the left-hand-side in
Eq. (43), when it is easy to compute the inverses of A and C.

We recall that

Λ−1
µ :=

1

µ
Im×m + JfcM

−1JT
fc ,

to which applying the matrix inversion lemma gives,

Λµ = µIm×m − µJfc(Mµ)
−1JT

fcµ, (44)

where we recall that

Mµ := M + µJT
fcJfc .

The second term in the right-hand side of Eq. (44) is alge-
braically identical to the Delassus matrix expression, which is
of the form Λ−1 := Jfc(M)−1JT

fc
. Therefore, we can augment
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the inertia matrix and leverage existing efficient algorithms
for computing the Delassus matrix [21], [28], [30] followed
by scalar multiplications and subtraction from a diagonal
matrix to compute the damped Delassus matrix inverse. We
recall from Section II-E that the augmented inertia matrix
in the maximal coordinates takes the form of updating all
the constrained links’ inertias Hi ← Hi + µKT

i Ki. This
implies that one of the two efficient maximal coordinates-
based Delassus matrix algorithms, namely EFPA [28] or PV-
OSIMr [30] can be used within cABA-OSIM.

Between the two options, we select the PV-OSIMr algorithm
due to its lower computational complexity of O(n + m2)
compared to O(m + md + m2) of EFPA. Since the inertia
augmentation and the evaluation of Eq. (44) require at most
O(m2) number of additional operations, the total complexity
of cABA-OSIM is O(n + m2). This contrasts with all the
existing (that we are aware of) Λµ computation algorithms
that require an additional O(m3) number of operations to
factorize the Delassus matrix. We present the cABA-OSIM
algorithm in the coming subsection, where we also include
the computations within PV-OSIMr for completeness.

A. cABA Delassus inverse algorithm

Algorithm 5 presents the cABA-OSIM algorithm. We now
review the terms from [30] needed to parse this algorithm and
follow that with a brief explanation. Let anc(i) and desc(i) be
the set of all link indices that are ancestors and descendants of
the ith link in the tree respectively. Let ES(i) = E∩(desc(i)∪
{i}) be the set of end-effectors supported by the ith link. LetN
be the set of all ‘branching’ links that support more strictly
more constraints than their children links, N = {0} ∪ E ∪
{i ∈ S|ES(j) ⊂ ES(i), ∀j ∈ γ(i)}.

Let jPi denote the extended force propagator (EFP), first
discussed in [52], which directly propagates spatial forces
acting on the ith link backward in the kinematic tree to an
ancestor link j. iPi = I6×6. EFP’s transpose jPT

i directly
propagates the spatial accelerations of the jth link to the de-
scendant link i (see [10], [52] for a derivation). Let jΩi be the
spatial inverse inertia matrix, which maps spatial forces acting
on the ith link to the ith link’s spatial acceleration considering
the motion of all the joints connecting the jth and the ith links.
Let cca(i, j) = max {(anc(i) ∪ {i}) ∪ (anc(j) ∪ {j})} be the
closest common ancestor link of the ith and the jth links.

The only additions compared to the PV-OSIMr algorithm
[30] are in line 4, where the inertia and constraint forces are
updated and in line 23, where the Delassus matrix is computed
using the matrix inversion lemma. Algorithm 5 presentation is
simplified relative to PV-OSIMr in [30] by absorbing multiple
“end-effectors” on the same link i within a single constraint
matrix Ki and by omitting a minor optimization, whereby the
EFP of a constrained link, that supports no other end-effector,
is initialized with Ki instead of I6×6. For more details, readers
are referred to [30].

Line 11 recursively computes the extended force propagator
(EFP) from a link i ∈ N to its closest ancestor in N , denoted
as Nanc(i) = max {N ∩anc(i)}. Similarly, line 12 recursively
computes the spatial inverse inertia apparent at a link i ∈ N

considering the joints connecting the ith link and N th
anc(i) link.

Then, in a limited outward sweep over i ∈ N , the spatial
inverse inertia considering the motion of all ancestor joints
0Ωi is computed in line 15. Finally, the constraint space EFP
jKT

i , which maps λi to the spatial forces acting on the jth

link is computed for all end-effector links i ∈ E and for all
links j ∈ N ∩ anc(i) in line 18. Note that iKi = Ki, and
π(i)Pi = I6, ∀i ∈ E .

This gives all the quantities required for assembling the
Delassus matrix for Mµ, given by

LA
0 =


0LA

1,1 . . . 0LA
1,mb

...
. . .

...
0LA

mb,1
. . . 0LA

mb,mb


whose blocks are computed in line 22, for i, j ∈ E , where
mb = C(E). That LA

0 is the Delassus matrix, was shown
in [10]. Each block 0LA

i,j encodes the coupling between the
ith and jth links. The right-hand side term in line 22 can be
interpreted as follows, it first maps λj to spatial forces on
the cca(i, j)th link, then computes the spatial acceleration of
the cca(i, j)th link resulting from these forces which actually
causes the the constraints on the ith and jth link to get coupled,
before finally transmitting this acceleration to the constraint
accelerations of the ith link. Finally, the damped Delassus
inverse matrix, the output of the cABA-OSIM algorithm, is
computed in line 23 using the matrix inversion lemma.

A limitation of this approach is that this optimal complexity
algorithm can only compute the damped Delassus inverse and
not the undamped Delassus inverse matrix. However, this is
not a major limitation because undamped Delassus matrix
might not even exist for redundant constraint formulations.
Even when the undamped inverse exists, it is a common
practice [53] to use the damped inverse due to the risk of
kinematic singularities.

B. Accelerating cABA for floating-base robots (cABA-OSIMf)

We now propose a minor structure-exploiting acceleration
for cABA-OSIM for certain robot structures, namely floating-
base robots with branching at the base. This structure is found
commonly, e.g., in quadrupeds and humanoids. For these
mechanisms, the Delassus matrix (as well as its inverse) is
dense, without any structural zeros because all the constraints
acting on different branches get coupled due to the floating-
base’s motion. However, LA

1 , where 1 is the floating base’s
index, would have a block-diagonal structure, with each block
corresponding to constraints from a branch. It is computa-
tionally more efficient to exploit this block-diagonal sparsity
and not explicitly compute the dense LA

0 matrix. This idea is
implemented by the cABA-OSIM-fast (cABA-OSIMf) that we
introduce in the rest of this subsection.

Using the notation from the PV algorithm, LA
1 is related to

LA
0 by the equation

LA
0 = LA

1 +KA
1 (HA

1 )−1KAT
1 , (45)

where accounting for the coupling introduced between the
constraints on different branches due to the spatial inverse in-
ertia of the floating base link destroys block-diagonal sparsity
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Algorithm 5 The cABA-OSIM algorithm

Require: q, Kis, robot model, µ
First forward sweep

1: for i in S do
2: HA

i ← Hi;
3: if i ∈ E then
4: HA

i ← HA
i + µKT

i Ki; iKi ← µKi

Backward sweep
5: for i in Sr do
6: if i ∈ N then
7: d(i)← i; iPi = I6×6;

iΩi ← 06×6

8: Di = ST
i H

A
i Si; Pi = (I6×6 −HA

i Si(Di)
−1ST

i )
9: HA

π(i) ← HA
π(i) + PiH

A
i ;

10: if ES(i) ̸= ∅ then
11: π(i)Pd(i) = Pi

iPd(i)

12: π(i)Ωd(i) =
iΩd(i) +

iPT
d(i) Si(D

−1
i )ST

i
iPd(i)

13: d(π(i)) ← d(i)
14: for i in N − {0} if Nanc(i) ̸= 0 do
15: 0Ωi =

N anc(i)Ωi +
N anc(i)PT

i
0ΩN anc(i)

N anc(i)Pi

16: for ei ∈ E do
17: for i in (Nr − {0}) ∩ ({anc(ei) ∪ {ei}) if Nanc(i) ̸= 0

do
18: N anc(i)Kei =

iKei
N anc(i)PT

i

19: for i, j ∈ E if i ≤ j do
20: 0LA

i,j =
cca(i,j)Ki (

0Ωcca(i,j))
cca(i,j)KT

j

21: if i ̸= j then
22: 0LA

j,i =
0 LAT

j,i

23: Λµ = µIm×m − LA
0

pattern of LA
1 . The key idea behind cABA-OSIMf is to not

explicitly evaluate the right-hand side of the equation above
but to directly multiply this right-hand side with vectors.
Modifications to Algorithm 5: The cABA-OSIM shown in
Algorithm 5 is easily modified to compute LA

1 instead of
LA
0 . Physically, LA

1 is the Delassus matrix assuming that link
1 (the floating-base) is fixed. Therefore, we need to modify
Algorithm 5 to not add the inverse inertia due to the 1st joint.
To do this, the backward sweep is run over only Sr − {1}
joints. Similarly N ← N − {1} and Nr ← Nr − {1}. The
lines 15, 20, 22 and 23 are modified to

1Ωi =
N anc(i)Ωi +

N anc(i)P
T

i
1ΩN anc(i)

N anc(i)Pi, (46a)
1LA

i,j =
cca(i,j)KA

i (1Ωcca(i,j))
cca(i,j)KAT

j , (46b)
1LA

j,i =
1LAT

j,i , (46c)

Λµ = µIm×m − LA
1 −KA

1 (HA
1 )−1KAT

1 . (46d)

However, the right-hand-side in Eq. (46d) is not to be explicitly
evaluated. Matrix-vector products with the damped Delassus
matrix Λµ are evaluated by directly multiplying the right-hand-
side with the vector.

The best-case scenario for cABA-OSIMf is when constraints
on the system are evenly distributed among the branches
originating from the floating-base. Let b be the number of
branches at the base. Then the constraints per branch is
m
b . The cost of computing the block diagonal term in LA

1

using PV-OSIMr for each branch is O(m
2

b2 ) plus an additional

cost term proportional to the number of links in the branch.
Accumulating this cost for all the branches requires O(m

2

b +n)
operations for computing LA

1 . Finally, evaluating the right-
hand side of Eq. (45) has a cost of O(m) bringing the total
computational complexity of cABA-OSIMf in this best-case
to O(m

2

b + n+m).

VII. CONNECTIONS TO MUJOCO AND THE PV
ALGORITHMS

In this section, we discuss the connections between the
algorithms presented in this paper and the ones implemented
in MUJOCO [54] corresponding to PV-soft and the PV-early
algorithms developed in [10].

A. Connection to MUJOCO and PV-soft

MUJOCO [5], [54], a popular simulator in robotics and RL
communities, with a wide user base, solves a soft version of
the Gauss’ principle. In MUJOCO, the hard motion constraints
are relaxed with a quadratic penalty. For a simulation problem
with equality constraints, the optimization problem solved by
MUJOCO is of the form

minimize
ν̇

1

2
∥ν̇ − ν̇free∥2M(q)+

∥Jfc(q)ν̇ + γfc − a∗c∥2R−1
E

, (47)

where RE ∈ Sm++ is a diagonal matrix chosen by the user,
and which can be interpreted as a compliance term.

Comparing the optimization problem in Eq. (47) with
the proxLTLs formulation in Eq. (16), we see that for
R−1

E = µIm×m and λk = 0m, one iteration of proxLTLs is
identical to the soft-Gauss problem solved in MUJOCO. Please
note from Remark 2 that proxLTLs is trivially extendable to
support a positive definite diagonal matrix R−1

E instead of the
weighted identity matrix µIm×m we have chosen as the com-
pliance term. Therefore, MUJOCO’s algorithm for kinematic
trees can be considered to be a special case of proxLTLs. A
practical consequence of this insight is that codebases using
soft Gauss principle such as MUJOCO can be extended readily
to obtain the proxLTLs algorithm that converges to a solution
that satisfies motion constraints. Computationally, even our
first iteration of the proxLTLs differs from MUJOCO’s imple-
mentation by using the approach mentioned in Section II-E to
speed up Mµ computation.

Analogously in the maximal coordinates, the problem
solved by the PV-soft algorithm is minimizing

minimize
ν̇

nb∑
i=1

{
1

2
aTi Hiai − fTi ai +

µ

2
∥Kiai − ki∥2

}
,

which can be seen to be a special case of constraintABA’s
objective function (see Eq. (29)), when λk = 0mk

. So, PV-
soft can be interpreted as the first ALM iteration of the
constraintABA.
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B. The proximal PV-early solver

ConstrainedABA is closely related to the O(n +m) com-
plexity PV-early algorithm proposed in [10]. ConstrainedABA
can be derived by applying the PV-early algorithm to solve
the proximal function in Eq. (14), but this time in maximal
coordinates. This involves adding proximal ℓ-2 regularization
to the maximal coordinate Lagrangian in Eq. (28) to get

proxµ,Lm
(ν̇,λk) := arg

λ
min
ν̇

max
λ

nb∑
i=1

{
1

2
aTi Hiai− (48)

fTi ai + λT
i (Kiai − ki)−

1

2µ
∥λi − λk

i ∥2
}
,

which makes the dual problem strongly convex. In the PV-
early algorithm, the dual variables are aggressively eliminated
as early as possible. Applying this idea to the problem above in
Eq. (48), all the dual variables can be immediately eliminated
since the problem is now strongly convex in the dual variables.
Imposing gradient stationarity KKT condition w.r.t the dual
variables of (48) gives

− 1

µ
λ∗
i +

1

µ
λk
i + (Kiai − ki) = 0. (49)

Re-arranging the terms gives the expression for optimal λi

λ∗
i = λk

i + µ(Kiai − ki). (50)

Finally, substituting them back into the problem in Eq. (48)
gives the purely primal objective function

min
ν̇

nb∑
i=1

{
1

2
aTi Hiai − fTi ai +

µ

2
∥Kiai − ki∥2+

λkT
i (Kiai − ki)

}
.

The objective function above is identical to the maximal
coordinate ALM formulation (see Eq. (29)) used to derive
the constrainedABA algorithm. Further computations by the
PV-early solver would mirror the three-sweep algorithm of
constrainedABA. Therefore, evaluating the proximal operator
using the PV-early solver is an alternative derivation of the
constrainedABA. Compared to this approach, our ALM-based
derivation in Section III is more accessible.

Previous work [10] had presented PV-soft and PV-early as
two separate algorithms. However, from a proximal perspec-
tive, we have shown that PV-soft is identical to one iteration
of constraintABA and that constraintABA can be derived by
applying the PV-early algorithm on the proximal problem in
Eq. (48). This reveals an interesting connection between the
PV-soft and PV-early algorithms, namely that PV-soft can
be derived from the PV-early algorithm using the proximal
formulation.

VIII. COMPUTATIONAL BENCHMARKING

We now present the benchmarking results of this paper’s
algorithms on diverse robots, namely Kuka Iiwa (7 DoF
chain), Solo [55]/Unittree Go1 (18 DoF tree), Talos (50 DoF
tree) [56], and Atlas with two shadow-hands attached to each
wrist (84 DoF tree). We also study the computational scaling

on a chain mechanism and a balanced binary tree mechanism
of varying numbers of links. This studies the impact of
different robot topologies on the presented algorithms.

Constraints on a hand, fingertip, or feet in the benchmarks
are represented as Hmi , Tmi or Fmi respectively where
mi is the constraint dimension. mi = 3 for connect-
type constraints where the constrained frame’s translation is
constraint, but its rotation is unconstrained. This can model a
quadruped’s foot contact constraints. mi = 6 for weld-type
constraints, where the constrained link’s motion is restricted in
all six directions. Notations such as F 2

mi
would indicate that

Fmi
constraint is imposed on each of the two robot feet. Ti

3

would imply that connect-type constraints were imposed on
i different fingertips of the Shadow Hand. We also consider
the typical case of modeling a humanoid’s foot contact with 4
connect-type constraint, which is denoted by F4

3 (note that
this symbol for a quadruped would instead imply a connect-
type constraint on each of its four feet).

We first discuss our implementation of the algorithms in
Section VIII-A, followed by benchmarking the constrained
dynamics algorithms and the damped Delassus inverse algo-
rithms in Section VIII-B and, Section VIII-C respectively.

A. Efficient C++ implementation

We first prototyped the algorithms in a MATLAB envi-
ronment using CASADI [57] followed by a C++ imple-
mentation within the PINOCCHIO library [6]. Constrained-
ABA and proxPV can be found in the pv.hxx file2,
while both proxLTL and proxLTLs can be found in the
constrained-dynamics.hxx file3. The cABA-OSIM
algorithm can be found in the PvDelassusMatrix function
in the delassus.hxx file4. With CASADI’s SX expressions,
we can conveniently count the number of atomic operations
such as additions, divisions, multiplications, sin/cos compu-
tations required by each algorithm. As explained in [10],
this allows comparing the algorithms in the classical manner
based on the number of operations, which is both imple-
mentation and computer architecture agnostic. However, on
modern CPU architectures, vectorization, and memory access
can significantly influence computation timings, therefore we
also compare based on the computation timings of a C++ im-
plementation of the algorithms within the PINOCCHO library.
However, this timing comparison is admittedly influenced by
code implementation details, compilers as well as on CPU
architecture. The LTL implementation [22] in the PINOCCHIO
library is particularly efficient due to its usage of CPU vector-
ization. Similarly, vectorizing constrainedABA and proxPV in
a general manner is not straightforward and is deemed to be
outside this paper’s scope.

All timings were benchmarked on a 13th Gen Intel®
Core™ i9-13950HX laptop CPU running Ubuntu
22.04LTS operating system. We present both results

2https://github.com/stack-of-tasks/pinocchio/blob/d091266a94b5e23578625
48ecfe0836e230a2c75/include/pinocchio/algorithm/pv.hxx

3https://github.com/stack-of-tasks/pinocchio/blob/912aa3dba3942c24639ce
4c6be4c5ed1b4eca15a/include/pinocchio/algorithm/constrained-dynamics.hxx

4https://github.com/stack-of-tasks/pinocchio/blob/d091266a94b5e23578625
48ecfe0836e230a2c75/include/pinocchio/algorithm/delassus.hxx

https://github.com/stack-of-tasks/pinocchio/blob/d091266a94b5e2357862548ecfe0836e230a2c75/include/pinocchio/algorithm/pv.hxx
https://github.com/stack-of-tasks/pinocchio/blob/d091266a94b5e2357862548ecfe0836e230a2c75/include/pinocchio/algorithm/pv.hxx
https://github.com/stack-of-tasks/pinocchio/blob/912aa3dba3942c24639ce4c6be4c5ed1b4eca15a/include/pinocchio/algorithm/constrained-dynamics.hxx
https://github.com/stack-of-tasks/pinocchio/blob/912aa3dba3942c24639ce4c6be4c5ed1b4eca15a/include/pinocchio/algorithm/constrained-dynamics.hxx
https://github.com/stack-of-tasks/pinocchio/blob/d091266a94b5e2357862548ecfe0836e230a2c75/include/pinocchio/algorithm/delassus.hxx
https://github.com/stack-of-tasks/pinocchio/blob/d091266a94b5e2357862548ecfe0836e230a2c75/include/pinocchio/algorithm/delassus.hxx
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with Intel’s Turbo Boost both turned off to minimize
CPU frequency variability and with Turbo Boost
turned on to indicate the speeds achievable on a modern
laptop in operational scenarios, when Turbo Boost is
typically active. The code was compiled using Clang-14
compiler with the usual optimized compilation flags -O3
-march=native. All the listed computation timings are
averaged over 100000 samples.

B. Constrained dynamics

We now benchmark constrainedABA, proxPV, proxLTLs,
and proxLTL algorithms in terms of the number of operations
and the computation timings of their C++ implementations.

1) Number of operations: Fig. 1 lists the number of oper-
ations, with their internal breakdown for proximal iterations,
for the different algorithms on different robots. HA refers to
the cost of computing the articulated body inertia matrices
in constrainedABA and proxPV algorithms. This operation
is more expensive in constrainedABA due to the inertia
matrix and constraint forces updates in Eq. (32). M−1

µ and
M−1 blocks for proxLTLs and proxLTL denote the cost of
computing and factorizing Mµ and M blocks, respectively.
Computing M−1

µ is more expensive than M−1 due to the
JSIM augmentation step in Eq. (27). The Λ block for proxPV
and proxLTL denotes the cost of factorizing the Λ−1 matrix.
Finally, the proximal block for all the algorithms denotes the
number of operations required by three proximal iterations.

The proximal iterations for constrainedABA and proxLTLs
are more expensive than for proxPV and proxLTL respectively,
as the latter two algorithms only solve the smaller dual prob-
lem during proximal iterations. ConstrainedABA’s proximal it-
erations are more expensive than that of proxLTLs because the
former performs a reduced backward and forward sweep over
all the joints supporting constraints, while proxLTLs computes
this using the constraint Jacobian and Cholesky decomposition
of Mµ. Proximal iterations of proxPV and proxLTL should
cost the same, but proxPV’s proximal iterations are slightly
more expensive because of an implementation detail. We have
employed an early elimination at the base strategy [10], which
speeds up factorization of Λ−1 (as seen in the reduced size of
the Λ block for proxPV), but increases the cost of solving for
the dual variables.

For the Go1 robot, the operation count of all the algorithms
is similar, with constrainedABA requiring approximately 20%
fewer operations than proxLTL. For larger robots as well
as an increased number of constraints, the lower complexity
algorithms clearly demonstrate their superiority.

2) Computation timings: Fig. 2 lists the computational
timings benchmarking of the C++ implementations of
the algorithms with the TurboBoost disabled. We find
constrainedABA to be faster than the other algorithms for all
the considered robots and constraint scenarios, except for one
case involving the Kuka iiwa robot arm with seven DoFs. Both
constrainedABA and proxPV algorithms become relatively
more efficient than the proxLTL algorithm for bigger robots
due to their linear complexity w.r.t n. ConstrainedABA and
proxLTLs were found to scale gracefully with an increasing

number of constraints compared to the proxLTL or the proxPV
algorithms due to their linear complexity w.r.t m. However,
as expected from the previous section, the computational cost
of each proximal iteration is greater for constrainedABA,
which performs a reduced backward and forward sweep,
compared to proxPV or proxLTL, which only solves the
dual problem iteratively. Since TurboBoost is enabled in
practice while simulating robotic systems, Table II includes
the mean and standard deviations for the computation timings
with TurboBoost enabled, for reference. In Table II, we
include a redundant constraint case when there are 4 3D
constraints at the convex hull of the robots’s feet in order
to capture the contact wrench cone [58]. It also considers
end-effector constrained serial chains composed of 3 DoF
joints, consisting of 7 (21 DoF total) or 14 (42 DoF) links.

Computational scaling for chains. For an end-effector
constrained chain (with 6D weld-type constraint), we now
study the computational scaling of the algorithms w.r.t
increasing chain sizes. The timings results are plotted for one
proximal iteration and three proximal iterations in Fig. 3a
and, Fig. 3b respectively. As expected, we observe a linear
increase in computational cost for constrainedABA and
proxPV and a superlinear increase for the proxLTL algorithm
as the number of links increases. ConstrainedABA is over
4x faster than proxLTL for a chain of 100 links if we allow
only one proximal iteration. However, when three proximal
iterations are allowed, constrainedABA becomes nearly as
expensive as the proxPV algorithm. As a testament to the
efficient vectorized implementation of LTL in PINOCCHIO,
the cost of proxLTL and proxLTLs increased only by 4x for
100 links compared to 50 links in Fig. 3a. Alternatively, if we
used the dense Cholesky decomposition in the EIGEN library
in place of PINOCCHIO’s LTL, the cost for 100 link chain
was found to be 8x higher than the cost for 50 link chain.
This is expected due to the cubic complexity of LTL for chains.

Computational scaling for balanced binary trees. Finally,
we benchmark the various algorithms on a balanced binary
tree mechanism, a structure that most favours the LTL-based
algorithms since the kinematic tree depth d is minimal for a
balanced binary tree with n links if we permit a branching
factor of 2. Each branch in the tree has three links before
it splits into two descendant branches. We constrain all the
leaf links with a 3D connect-type constraint. Therefore,
a balanced binary tree with n links has (n mod 6 + 1)3
constraints and the results are plotted in Fig. 3c and Fig. 3d
for one and three proximal iterations respectively. Therefore,
we can also see the algorithms’ scaling w.r.t. constraints
in this test case. As expected, we observe constrainedABA
to scale linearly. However, surprisingly, proxLTLs is also
particularly efficient. This is because its complexity for the
favorable binary tree example is O(nlog22(n) +md) linearly,
and it benefits from the efficient vectorized implementation
of LTL [22] in the PINOCCHIO library. Both proxPV and
proxLTL scale poorly due to their cubic complexity w.r.t. to
the number of constraints.
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Fig. 1: Benchmarking the number of operations of the constrained dynamics algorithms with three proximal iterations.
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(d) Atlas robot with two Shadow Hands attached
to each wrist.

Fig. 2: Computational benchmarking of the C++ implementation of the constrained FD algorithms with TurboBoost disabled.
The ‘prox’ component in the bar graphs corresponds to the computational cost of three proximal iterations for each algorithm.

3) Convergence results: Empirically, the proximal method
was found to converge quite reliably in about three itera-
tions. This should not be surprising since we are solving
small equality-constrained strongly convex QPs. Fig. 4 plots a
representative convergence whisker plot for 1000 randomly
generated examples for a Talos robot with a challenging
redundant constraint formulation. µ was chosen to be 106 as
it provided a reasonable trade-off between fast convergence
and numerical issues. Interestingly, we find the proxLTLs
and constrainedABA to converge to smaller errors compared
to proxLTL and proxPV algorithms. This is because, in the
former algorithms, the primal error is fed back in the ALM

formulation, effectively providing iterative refinement for free,
while in the latter algorithms, the dual problem is solved till
convergence before forward-sweep to get the primal variables.

We now investigate the convergence of constrainedABA to
a high accuracy of 10−10 for the various robots and constraint
scenarios considered in Table III. Similarly to the previous
paragraph, µ = 106 for all the robots and is kept constant
during the iterations. ConstrainedABA was implemented on
100000 examples with randomly sampled positions, veloci-
ties and torques. We select the the constraint scenario for
which constrainedABA performed worst for a given robot, and
for this scenario, the percentage of cases that converged to
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(a) One proximal iteration for serial chains.
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(b) Three proximal iterations for serial chains.
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(c) One proximal iteration for binary trees.
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(d) Three proximal iterations for binary trees.

Fig. 3: Benchmarking the computational scaling of the different algorithms for serial chains and binary trees.

TABLE II: Computational timings of the algorithms in µs with
Turbo Boost enabled and is averaged over 100000 samples
with the standard deviation displayed in the parentheses. Each
algorithm is allowed three proximal iterations.

System cABA PV LTLs LTL
Iiwa-H3 1.07(0.40) 1.03(0.23) 1.01(0.35) 1.58(0.51)
Iiwa-H6 1.10(0.45) 1.43(0.51) 1.03(0.427) 2.10(0.34)
Solo-F2

3 2.00(0.60) 2.25(0.69) 2.23(0.76) 3.18(0.74)
Solo-F4

3 2.45(0.54) 3.05(0.73) 2.35(0.73) 4.15(0.5)
Talos-F2

6 5.43(1.08) 6.83(0.60) 7.32(0.54) 10.6(0.79)
Talos-F2

6H
2
6 6.69(0.65) (1.0) 7.77(0.6) 15.1(0.73)

Talos-F8
3 6.16(1.2) 8.76(1.1) 7.47(1.2) 14.3(1.2)

Atlas SR-F2
6 8.36(1.34) 10.1(1.3) 13.8(1.0) 18.1(1.4)

Atlas SR-F2
6T

5
3 10.8(1.4) 14.9(0.7) 14.8(1.5) 26.8(1.7)

Atlas SR-F2
6T

10
3 12.5(1.2) 21.6(1.2) 15.2(1.2) 37.5(1.3)

Chain 7 SP-H6 1.91(0.74) 2.42(0.97) 2.21(0.83) 3.53(0.90)
Chain 14 SP-H6 3.80(1.0) 4.54(1.0) 6.21(1.1) 7.67(1.4)

high accuracy within a given number of iterations is plotted
in Fig. 5. While a large majority of the problems (all for
the humanoid platforms) considered were solved to a high-
accuracy within 5 iterations. About 0.5% of cases for the Iiwa
and Solo required more than 10 iterations. Notably, Iiwa’s
and Solo’s convergence improves significantly for higher and
lower values of µ respectively. This highlights the limitations
of keeping µ fixed and calls for µ-scheduling similarly to [39].
However, this aspect must be left to the outer solver (e.g. [59])
simulating physics using the this paper’s algorithms as the
inner solver.
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Fig. 4: Benchmarking convergence of the different proximal
dynamics algorithms on a Talos robot with 21 constraints
(F2

6H6 and 3D constraint on elbow). This leads to a redun-
dant constraint formulation that requires proximal methods.
A whisker plot of convergence of the constraint residual is
plotted for 10 proximal iterations µ = 106 for 1000 randomly
generated examples.

C. Benchmarking cABA-OSIM

We now benchmark the damped Delassus inverse
algorithms, cABA-OSIM and cABA-OSIMf (an accelerated
version of cABA-OSIM tailored for floating-base robots with
branching at the base) introduced in Section VI. We compare
our cABA-OSIM and cABA-OSIMf with the existing state-of-
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Fig. 5: Benchmarking the percentage of problems solved
to a high accuracy of 10−10 within the plotted number of
iterations. µ = 106 for all the robot setups. 10000 samples
were randomly generated.

the-art OSIM algorithms PV-OSIMr [30] and PV-OSIMf [10],
along with the standard higher-complexity LTL-OSIM [21]
algorithm. Similarly to the constrained dynamics algorithms,
we first compare the algorithms by the number of operations
before moving on to the computation timings of their C++
implementations in the PINOCCHIO library.

Number of operations Fig. 6 lists the number of operations
required by different OSIM algorithms for the Unitree Go1
robot, Talos robot and the Atlas robot with a Shadow Hand
attached to each wrist in Fig. 6a, Fig. 6b, Fig. 6c respectively.
In the plots, HA refers to the cost of computing the articulated
body inertias, which is slightly more expensive for the cABA
algorithms compared to the PV algorithms due to additional
inertia updates performed in line 4 of the Algorithm 5.
The LTL-OSIM algorithm is in general the most expensive
algorithm and scales poorly to higher dimensional robots as
well. Both the PV-OSIMr and the LTL-OSIM algorithms scale
poorly to the increasing number of constraints compared to
cABA-OSIM, due to the cubic complexity they incur during
the Delassus matrix factorization.

Since cABA-OSIMf and PV-OSIMf are both tailored
for floating-base robots with branching at the base, they
outperform the other algorithms in benchmark cases, where
the robots conform to this structure. However, for a higher
number of constraints, the lower complexity cABA-OSIMf
algorithm scales better because it does not require the
factorization of LA

1 , unlike the PV-OSIMf algorithm.

Computation timings Table III lists the computation timings
for a subset of the algorithms from the previous section,
that we implemented in C++. Similarly to the constrained
dynamics benchmarking, we enabled TurboBoost since this
is more reflective of the actual usage of these algorithms.
However, there are two main differences compared to the
previous benchmarks. Firstly, we also include the cost for
computing the damped Delassus inverse using LTL in the

TABLE III: Computational timings in µs of the damped
Delassus inverse algorithms with Turbo Boost enabled
are displayed below. The timings are averaged over 100000
samples and the standard deviations are displayed in the paren-
theses. ∗ LTL-chol computes the Cholesky decomposition of
Λ−1
µ unlike the other algorithms which actually compute Λµ.

System cABA-f cABA LTL-inv LTL-chol∗

Iiwa - H3 0.74(0.7) 0.74(0.76) 0.66(0.7) 0.58(0.7)
Iiwa - H6 0.82(0.8) 0.81(0.8) 0.84(0.6) 0.67(0.8)
Solo - F2

3 1.63(0.8) 1.75(0.8) 1.64(0.9) 1.44(0.8)
Solo - F4

3 2.00(1.0) 2.38(1.0) 2.64(1.1) 1.95(1.1)
Talos - F2

6 4.28(1.6) 4.62(1.8) 6.74(1.8) 6.01(1.66)
Talos - F2

6H
2
6 5.51(1.5) 5.86(1.4) 11.3(1.3) 8.79(1.6)

Atlas SR - F2
6 6.70(1.4) 6.82(1.4) 13.1(2.9) 12.6(2.6)

Atlas SR - F2
6T

5
3 8.63(1.7) 9.21(1.83) 21.4(2.5) 17.8(2.1)

Atlas SR - F2
6T

10
3 12.5(2.0) 13.4(2.1) 37.2(5.1) 26.3(2.5)

last column, to make the comparison fairer with our cABA-
OSIM algorithms, which compute the inverse and not just the
Cholesky decomposition of Λ−1

µ . Computing the inverse is
interesting because it makes computing analytical derivatives
faster because of vectorization effects [60]. Secondly, the
cABA-OSIM and cABA-OSIMf algorithms are implemented
in a global frame instead of a local frame compared to
the previous sections. Using global frame negatively affects
cABA-OSIM and cABA-OSIMf more than the LTL methods
because of the loss of sparsity in the computation of Di and
Pi (note that Si typically has only one non-zero element for
a local frame implementation, while it is dense for a global
frame implementation). This choice was made to facilitate our
future work on using the Delassus inverse matrix to compute
analytical derivatives of constrained dynamics, which is faster
with global frames.

As expected cABA-OSIM and cABA-OSIMf significantly
outperform the LTL methods for larger robots. However, for
smaller robots including an 18 DoF quadruped, the LTL
method remains competitive.

IX. DISCUSSION

The proximal formulation of the equality-constrained dy-
namics problem results in four different algorithms, namely
proxLTL, proxLTLs, proxPV, and constrainedABA depending
on the usage of maximal or minimal coordinates during
derivation and the order of elimination of the primal and
dual variables, as shown in the overview figure Fig. 7. These
algorithms generalize several existing algorithms. For instance,
MUJOCO’s equality-constrained dynamics algorithm and PV-
soft [10] can be considered to be the first iteration of proxLTLs
and constrainedABA respectively. Our analysis also revealed
that PV-soft can be recovered by applying PV-early on the
proximal formulation, thereby connecting two existing algo-
rithms that were considered to be disparate.

Though applying PV-early’s idea of aggressively elimi-
nating dual variables to the proximal dynamics formulation
immediately gives us the first iteration of constrainedABA,
constrainedABA generalizes this idea by introducing proximal
iterations. Moreover, PV-early’s superior performance in [10]
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(c) Atlas equipped with two Shadow Hands.

Fig. 6: Benchmarking the number of operations of the damped Delassus inverse/factorization algorithms.
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Fig. 7: Overview of the proximal dynamics algorithms.

relied on an efficient formula to compute the SVD of a
symmetric rank-1 (SR1) 6× 6 matrix arising due to one DoF
joints and would become inefficient for more general higher
DoF joints. However, constrainedABA avoids this limitation
by eliminating all dual variables, thereby not requiring any
SVD computation, and is therefore readily applicable to robots
with higher DoF joints without compromising performance.
However, we must note that we expect the vanilla PV-early
algorithm (without proximal regularization) to marginally out-
perform constrainedABA for robots that predominantly pos-
sess single DoF joints and no singular constraints, as it does
not require an iterative procedure. However, constrainedABA
is significantly easier to implement than the vanilla PV-early
algorithm, remains efficient for multi-DoF joints, and is valid
even in singular cases.

ConstrainedABA, the main contribution of this paper, is the
first algorithm with a O(n+m) complexity that can reliably
deal with singular constraints without biasing solutions to-
wards the origin or resorting to expensive SVD computation.
We also derived cABA-OSIM, a O(n + m2) complexity
algorithm, to compute the damped Delassus inverse algorithm,
also known as the OSIM. All existing OSIM algorithms have
an extra m3 term in the general case due to the factorization of
the Delassus matrix. Since the damped Delassus inverse matrix
is an m×m matrix and its computation requires considering
all the joints, the asymptotic complexity achieved by us is
optimal.

In addition to deriving these algorithms, we implemented
them in C++, benchmarked them for various robots, and stud-
ied their scaling for chains and binary trees. The comparison
between the algorithms was made based on the number of

operations and the computation timings of an efficient C++ im-
plementation. The lower-complexity algorithms, constrained-
ABA, and proxPV were significantly more efficient than
proxLTLs and proxLTL regarding the number of operations
for larger robots like humanoids. However, the performance
difference between the low-complexity and high-complexity
algorithms was reduced for the C++ implementation. This
is because the high-complexity algorithms enjoy CPU vec-
torization benefits from an efficient implementation in [22].
Devising a similarly efficient vectorized implementation for
the low-complexity algorithms is far from straightforward as
there is an inherent sequentiality in the recursive algorithm, so
this aspect is not considered within the scope of this article.
Nevertheless, constrainedABA emerged to be the fastest of
the four algorithms for quadrupeds and humanoids even for
the C++ implementation, being over 2x faster than proxLTL,
the previously existing state-of-the-art C++ implementation.
However, the proxLTLs algorithm turned out to be surprisingly
competitive with constrainedABA by requiring only 20% more
time for a heavily constrained Talos robot.

Our optimal complexity algorithm, cABA-OSIM, was also
benchmarked with existing algorithms in terms of the number
of operations required and computation timing of a C++
implementation. While it was found to require over 3x fewer
operations compared to the LTL-OSIM methods, this differ-
ence was reduced for the C++ timings because of the efficient
vectorized implementation of LTL-OSIM in the PINOCCHIO
library. Despite this reduction, the cABA-OSIM remained over
2x faster than the LTL method for a large robot-like Talos.

X. CONCLUSION

We have applied the proximal point algorithm from
optimization literature to equality-constrained robot dynam-
ics problems for kinematic trees. The proximal formulation
enables handling challenging singular cases efficiently and
solves motion constraints exactly up to machine precision
often within 5 iterations. Focusing on the algorithmic as-
pect of proximal constrained dynamics algorithms, our ex-
tensive treatment derived four different algorithms, proxLTL,
proxLTLs, proxPV, and constrainedABA depending on the
choice of maximal/minimal coordinate formulation and the
primal/dual elimination order. Two of these (constrainedABA
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and proxPV) are original contributions of this article, while
the third (proxLTLs) is implemented and benchmarked for the
first time, though previously mentioned in [22].

ConstrainedABA, this article’s main contribution, is the
first linear complexity algorithm that deals with singular
cases without resorting to expensive SVD computation, that
we are aware of, and perhaps the simplest. The proximal
formulation and the matrix inversion lemma also led to a
beautiful result, where any Delassus matrix algorithm could be
used to directly compute the damped Delassus inverse matrix,
avoiding the expensive matrix factorization step. By using PV-
OSIMr algorithm, we obtained cABA-OSIM algorithm with
an optimal complexity of O(n + m2). The algorithms are
implemented in C++ as a part of the Pinocchio library and
are extensively benchmarked. ConstrainedABA emerged as
the fastest out of the four algorithms for larger robots like
quadrupeds and humanoids. The higher complexity proxLTLs
surprisingly remained competitive even for larger robots, when
heavily constrained, due to linear complexity in constraint
dimension and an efficient vectorized C++ implementation.

The proximal formulation generalizes and establishes con-
nections between existing algorithms like MUJOCO’s solver,
PV-soft, and PV-early. It is a powerful formulation that enables
efficient trading-off between MUJOCO-style compliance and
an expensive SVD-style rigid contact during singular cases
(and also in general) through fast proximal iterations. Con-
strainedABA and proxLTLs, in particular, are fairly straight-
forward to implement, by introducing only a few new lines
of additional code compared to Featherstone’s original ABA
and LTL algorithms. This facilitates their implementation in
existing simulators like MUJOCO, DRAKE, or RAISIM, to
name a few of the most popular within the robotics community.

The favorable properties of the proximal point algorithm
such as fast proximal iterations, differentiability of the prox-
imal operator, and the cABA-OSIM set us up for several
interesting future directions. We expect constrainedABA and
cABA-OSIM, in particular, to serve as the computational
backbone for our planned future work on extending proximal
methods to efficiently deal with inequality constraints [39],
[61], frictional contacts [4], [62]–[65], and analytical deriva-
tives [6], [43], [60], [66].
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[12] C. F. Gauß, “Über ein neues allgemeines grundgesetz der mechanik.”
1829.

[13] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[14] R. Featherstone, “The calculation of robot dynamics using articulated-
body inertias,” Int. J. Robot. Res., vol. 2, no. 1, pp. 13–30, 1983.

[15] H. Brandl, R. Johanni, and M. Otter, “A very efficient algorithm for the
simulation of robots and similar multibody systems without inversion
of the mass matrix,” IFAC Proceedings Volumes, vol. 19, no. 14, pp.
95–100, 1986.

[16] G. Rodriguez, “Kalman filtering, smoothing, and recursive robot arm
forward and inverse dynamics,” IEEE Journal on Robotics and Automa-
tion, vol. 3, no. 6, pp. 624–639, 1987.

[17] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation
of robotic mechanisms,” 1982.

[18] R. Featherstone, “Efficient factorization of the joint-space inertia matrix
for branched kinematic trees,” Int. J. Robot. Res., vol. 24, no. 6, pp.
487–500, 2005.

[19] J. P. Popov, A. F. Vereshchagin, and S. L. Zenkevič, Manipuljacionnyje
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[30] A. S. Sathya, W. Decré, and J. Swevers, “Pv-osimr: A lowest order
complexity algorithm for computing the delassus matrix,” IEEE Robot.
Autom. Lett., vol. 9, no. 11, pp. 10 224–10 231, 2024.

[31] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals
of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.

[32] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 2017.

[33] F. E. Udwadia and R. E. Kalaba, Analytical dynamics : a new approach.
Cambridge: Cambridge University press, 1996.

[34] H. Bruyninckx and O. Khatib, “Gauss’ principle and the dynamics
of redundant and constrained manipulators,” in Proc. IEEE Int. Conf.
Robot. Autom., vol. 3. IEEE, 2000, pp. 2563–2568.

[35] J. Baumgarte, “Stabilization of constraints and integrals of motion
in dynamical systems,” Computer methods in applied mechanics and
engineering, vol. 1, no. 1, pp. 1–16, 1972.

[36] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[37] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[38] R. T. Rockafellar, “Monotone operators and the proximal point algo-
rithm,” SIAM journal on control and optimization, vol. 14, no. 5, pp.
877–898, 1976.

[39] A. Bambade, S. El-Kazdadi, A. Taylor, and J. Carpentier, “Prox-qp: Yet
another quadratic programming solver for robotics and beyond,” in RSS
2022-Robotics: Science and Systems, 2022.

[40] W. Jallet, A. Bambade, N. Mansard, and J. Carpentier, “Constrained
differential dynamic programming: A primal-dual augmented lagrangian
approach,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 13 371–13 378.
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M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols et al., “An
open torque-controlled modular robot architecture for legged locomotion
research,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3650–3657, 2020.

[56] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,
J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux et al.,
“Talos: A new humanoid research platform targeted for industrial appli-
cations,” in 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids). IEEE, 2017, pp. 689–695.

[57] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[58] S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts
for humanoid robots: Closed-form formulae of the contact wrench cone
for rectangular support areas,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 5107–5112.

[59] J. Carpentier, L. Montaut, and Q. L. Lidec, “From compliant to rigid
contact simulation: a unified and efficient approach,” arXiv preprint
arXiv:2405.17020, 2024.

[60] J. Carpentier and N. Mansard, “Analytical derivatives of rigid body
dynamics algorithms,” in Proc. Robot., Sci. Syst., 2018.

[61] W. Jallet, A. Bambade, E. Arlaud, S. El-Kazdadi, N. Mansard,
and J. Carpentier, “PROXDDP: Proximal Constrained Trajectory
Optimization,” Dec. 2023, working paper or preprint. [Online].
Available: https://inria.hal.science/hal-04332348

[62] P. C. Horak and J. C. Trinkle, “On the similarities and differences among
contact models in robot simulation,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 493–499, 2019.

[63] A. M. Castro, F. N. Permenter, and X. Han, “An unconstrained convex
formulation of compliant contact,” IEEE Transactions on Robotics,
vol. 39, no. 2, pp. 1301–1320, 2022.

[64] Q. L. Lidec, W. Jallet, L. Montaut, I. Laptev, C. Schmid, and J. Car-
pentier, “Contact Models in Robotics: a Comparative Analysis,” arXiv
preprint arXiv:2304.06372, 2023.

[65] Q. Le Lidec and J. Carpentier, “Reconciling RaiSim with the Maximum
Dissipation Principle,” Feb. 2024, working paper or preprint. [Online].
Available: https://hal.science/hal-04438175

[66] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
Feature-Complete Differentiable Physics Engine for Articulated Rigid
Bodies with Contact Constraints,” in Proceedings of Robotics: Science
and Systems, Virtual, July 2021.

Ajay Sathya is a postdoctoral researcher at Inria and
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