Settings(DenseBackend dense_backend=DenseBackend::PrimalDualLDLT, T default_mu_eq=1.E-3, T default_mu_in=1.E-1, T alpha_bcl=0.1, T beta_bcl=0.9, T refactor_dual_feasibility_threshold=1e-2, T refactor_rho_threshold=1e-7, T mu_min_eq=1e-9, T mu_min_in=1e-8, T mu_max_eq_inv=1e9, T mu_max_in_inv=1e8, T mu_update_factor=0.1, T mu_update_inv_factor=10, T cold_reset_mu_eq=1./1.1, T cold_reset_mu_in=1./1.1, T cold_reset_mu_eq_inv=1.1, T cold_reset_mu_in_inv=1.1, T eps_abs=1.e-5, T eps_rel=0, isize max_iter=10000, isize max_iter_in=1500, isize safe_guard=1.E4, isize nb_iterative_refinement=10, T eps_refact=1.e-6, bool verbose=false, InitialGuessStatus initial_guess=InitialGuessStatus::EQUALITY_CONSTRAINED_INITIAL_GUESS, bool update_preconditioner=false, bool compute_preconditioner=true, bool compute_timings=false, bool check_duality_gap=false, T eps_duality_gap_abs=1.e-4, T eps_duality_gap_rel=0, isize preconditioner_max_iter=10, T preconditioner_accuracy=1.e-3, T eps_primal_inf=1.E-4, T eps_dual_inf=1.E-4, bool bcl_update=true, MeritFunctionType merit_function_type=MeritFunctionType::GPDAL, T alpha_gpdal=0.95, SparseBackend sparse_backend=SparseBackend::Automatic, bool primal_infeasibility_solving=false, isize frequence_infeasibility_check=1, T default_H_eigenvalue_estimate=0.)